• Title/Summary/Keyword: Guided bone regeneration (GBR)

Search Result 80, Processing Time 0.019 seconds

DEVELOPMENT OF A BIOACTIVE CELLULOSE MEMBRANE FROM SEA SQUIRT SKIN FOR BONE REGENERATION - A PRELIMINARY RESEARCH (멍게와 미더덕 피부의 천연 셀룰로오스 각질을 이용한 골재생 효능을 가진 생활성막의 개발 - 예비 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Jo, Joung-Ae;Lee, Seung-Cheol;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.440-453
    • /
    • 2005
  • Objectives : To develop a bioactive membrane for guided bone regeneration (GBR), the biocompatibility and bone regenerating capacity of the cellulose membrane obtained from the Ascidians squirt skin were evaluated. Materials and methods : After processing the pure cellulose membrane from the squirt skin, the morphological study, amino acid analysis and the immunoreactivity of the cellulose membrane were tested. Total eighteen male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into two control (n=8) and another two experimental groups (n=10). In the first experimental group (n=5), the cellulose membrane was applicated to the 8.0 mm sized calvarial bone defect and the same sized defect was left without cellulose membrane in the first control group (n=4). In the another experimental group (n=5), the cellulose membrane was applicated to the same sized calvarial bone defect after femoral bone graft and the same sized defect with bone graft was left without cellulose membrane in the another control group (n=4). Each group was sacrificed after 6 weeks, the histological study with H&E and Masson trichrome stain was done, and immunohistochemical stainings of angiogenin and VEGF were also carried out. Results : The squirt skin cellulose showed the bio-inductive effect on the bone and mesenchymal tissues in the periosteum of rat calvarial bone. This phenomenon was found only in the inner surface of the cellulose membrane after 6 weeks contrast to the outer surface. Bone defect covered with the bioactive cellulose membrane showed significantly greater bone formation compared with control groups. Mesenchymal cells beneath the inner surface of the bioactive cellulose membrane were positive to the angiogenin and VEGF antibodies. Conclusion : We suppose that there still remains extremely little amount of peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx. This composition could prevent the adverse immunological hypersensitivity and also induce bioactive properties of cellulose membrane. These properties induced the effective angiogenesis with rapid osteogenesis beneath the inner surface of cellulose membrane, and so the possibilities of clinical application in dental field as a GBR material will be able to be suggested.

Long-term Retrospective Study on Cumulative Survival Rate of Implants with Guided Bone Regeneration (골유도재생술을 동반한 임플란트의 생존율에 대한 연구)

  • Jung, Suk-Hyun;Kim, Jun-Hwan;Namgung, Da-Jeong;Kim, Yun-Jeong;Chung, Jaeeun;Ku, Young
    • Implantology
    • /
    • v.22 no.4
    • /
    • pp.196-209
    • /
    • 2018
  • Purpose: The purpose of this study was to analyze the cumulative survival rate of dental implants installed with guided bone regeneration (GBR), and also elucidate the factors related with the survival of dental implants. Material and Methods: This retrospective study was conducted on 148 dental implants installed in 76 patients by one specialist (Y.K.) at the Department of Periodontology and Implant Center, Seoul National University Dental Hospital from 2001 to 2010. The cumulative survival rates were obtained by the Kaplan-Meier method. The correlations between various factors and dental implant survival were analyzed by using the log-rank test and Cox proportional hazards model. Results: Among 148 dental implants installed in 76 patients, 8 implants in 7 patients were lost and the cumulative survival rates up to 5-years and 10-years were 97% and 89%, respectively. Gender, smoking status and location of implant were significantly associated with the cumulative survival rate of implants (p < 0.05). Age, history of hypertension and diabetes were not significantly associated with the cumulative survival rate of implants (p > 0.05). Conclusion: The dental implants installed with guided bone regeneration is predictable technique according to the results of cumulative survival rate over 10 years.

Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration

  • Yoo, Chae-Kyung;Jeon, Jae-Yun;Kim, You-Jin;Kim, Seong-Gon;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.17.1-17.6
    • /
    • 2016
  • Background: The aim of this study is to verify the feasibility of using silk fibroin (SF) as a potential membrane for guided bone regeneration (GBR). Methods: Various cellular responses (i.e., cell attachment, viability, and proliferation) of osteoblast-like MG63 cells cultured on an SF membrane were quantified. After culturing on an SF membrane for 1, 5, and 7 days, the attachment and surface morphology of MG63 cells were examined by optical and scanning electron microscopy (SEM), cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was quantified using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. Results: Optical microscopy revealed that MG63 cells cultured on the SF membrane proliferated over the 7-day observation period. The viability of cells cultured on SF membranes (SF group) and on control surfaces (control group) increased over time (P < 0.05); however, at respective time points, cell viability was not significantly different between the two groups (P > 0.05). In contrast, cell proliferation was significantly higher in the SF membrane group than in the control group at 7 days (P < 0.05). Conclusions: These results suggest that silk fibroin is a biocompatible material that could be used as a suitable alternative barrier membrane for GBR.

Anterior maxillary defect reconstruction with a staged bilateral rotated palatal graft

  • Jung, Gyu-Un;Pang, Eun-Kyoung;Park, Chang-Joo
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • Purpose: In the anterior maxilla, hard and soft tissue augmentations are sometimes required to meet esthetic and functional demands. In such cases, primary soft tissue closure after bone grafting procedures is indispensable for a successful outcome. This report describes a simple method for soft tissue coverage of a guided bone regeneration (GBR) site using the double-rotated palatal subepithelial connective tissue graft (RPSCTG) technique for a maxillary anterior defect. Methods: We present a 60-year-old man with a defect in the anterior maxilla requiring hard and soft tissue augmentations. The bone graft materials were filled above the alveolar defect and a titanium-reinforced nonresorbable membrane was placed to cover the graft materials. We used the RPSCTG technique to achieve primary soft tissue closure over the graft materials and the barrier membrane. Additional soft tissue augmentation using a contralateral RPSCTG and membrane removal were simultaneously performed 7 weeks after the stage 1 surgery to establish more abundant soft tissue architecture. Results: Flap necrosis occurred after the stage 1 surgery. Signs of infection or suppuration were not observed in the donor or recipient sites after the stage 2 surgery. These procedures enhanced the alveolar ridge volume, increased the amount of keratinized tissue, and improved the esthetic profile for restorative treatment. Conclusions: The use of RPSCTG could assist the soft tissue closure of the GBR sites because it provides sufficient soft tissue thickness, an ample vascular supply, protection of anatomical structures, and patient comfort. The treatment outcome was acceptable, despite membrane exposure, and the RPSCTG allowed for vitalization and harmonization with the recipient tissue.

Silk polymer for medical applications (의료용 실크 소재로서의 실크단백질의 연구 동향)

  • Kweon, HaeYong;Jo, You-Young;Lee, Kwang-Gill;Kim, Hyun-Bok;Yeo, Joohong
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • Silk polymer has been focused recently on medical applications as a novel biomaterials. The factors for biomaterials were considered and reviewed recent research on surgical suture, wound dressing, tympanic regeneration patch, guided bone regeneration membrane, bone implant and ligament. Silk polymer is good mechanical properties and biocompatibility. Therefore it might be used as one of promising materials for medical application.

Fractal analysis of the surgical treatment of ligature-induced peri-implantitis in dogs (임플란트 주위염 치료 효과의 프랙탈 분석)

  • Kim, Hak-Kun;Kim, Jin-Soo
    • Imaging Science in Dentistry
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose : To evaluate the effect of surgical treatment of ligature-induced peri-implantitis in dogs using fractal analysis. Also, the capabilities of fractal analysis as bone analysis techniques were compared with those of histomorphometric analysis. Materials and Methods : A total of 24 implants were inserted in 6 dogs. After a 3-months, experimental periimplantitis characterized by a bone loss of about 3 mm was established by inducing with wires. Surgical treatment involving flap procedure, debridement of implants surface with chlorhexidine and saline (group 1), guided bone regeneration (GBR) with absorbable collagen membrane and mineralized bone graft (group 2), and $CO_2$ laser application with GBR (group 3) were performed. After animals were sacrificed in 8 and 16 weeks respectively, bone sections including implants were made. Fractal dimensions were calculated by box-counting method on the skeletonized images, made from each region of interest, including five screws at medial and distal aspects of implant, were selected. Results : Statistically significant differences in the fractal dimensions between the group 1($0.9340{\pm}0.0126$) and group 3($0.9783{\pm}0.0118$) at 16 weeks were found (P<0.05). The fractal dimension was statistically significant different between 8($0.9395{\pm}0.0283$) and 16 weeks in group 3 (P<0.05). These results were similar with the result of the evaluation of new bone formation in histomorphometric analysis. Conclusions : Treatment of experimental peri-implantitis by using $CO_2$ laser with GBR is more useful than other treatments in the formation of new bone and also the tendency of fractal dimension to increase relative to healing time may be a useful means of evaluating.

Clinical Evaluation of Guided Bone Regeneration Using 3D-titanium Membrane and Advanced Platelet-Rich Fibrin on the Maxillary Anterior Area (상악 전치부 3D-티타늄 차폐막과 혈소판농축섬유소를 적용한 골유도재생술의 임상적 평가)

  • Lee, Na-Yeon;Goh, Mi-Seon;Jung, Yang-Hun;Lee, Jung-Jin;Seo, Jae-Min;Yun, Jeong-Ho
    • Implantology
    • /
    • v.22 no.4
    • /
    • pp.242-254
    • /
    • 2018
  • The aim of the current study was to evaluate the results of horizontal guided bone regeneration (GBR) with xenograf t (deproteinized bovine bone mineral, DBBM), allograf t (irradiated allogenic cancellous bone and marrow), titanium membrane, resorbable collagen membrane, and advanced platelet-rich fibrin (A-PRF) in the anterior maxilla. The titanium membrane was used in this study has a three-dimensional (3D) shape that can cover ridge defects. Case 1. A 32-year-old female patient presented with discomfort due to mobility and pus discharge on tooth #11. Three months after extracting tooth #11, diagnostic software (R2 GATE diagnostic software, Megagen, Daegu, Korea) was used to establish the treatment plan for implant placement. At the first stage of implant surgery, GBR for horizontal augmentation was performed with DBBM ($Bio-Oss^{(R)}$, Geistlich, Wolhusen, Switzerland), irradiated allogenic cancellous bone and marrow (ICB $cancellous^{(R)}$, Rocky Mountain Tissue Bank, Denver, USA), 3D-titanium membrane ($i-Gen^{(R)}$, Megagen, Daegu, Korea), resorbable collagen membrane (Collagen $membrane^{(R)}$, Genoss, Suwon, Korea), and A-PRF because there was approximately 4 mm labial dehiscence after implant placement. Five months after placing the implant, the second stage of implant surgery was performed, and healing abutment was connected after removal of the 3D-titanium membrane. Five months after the second stage of implant surgery was done, the final prosthesis was then delivered. Case 2. A 35-year-old female patient presented with discomfort due to pain and mobility of implant #21. Removal of implant #21 fixture was planned simultaneously with placement of the new implant fixture. At the first stage of implant surgery, GBR for horizontal augmentation was performed with DBBM ($Bio-Oss^{(R)}$), irradiated allogenic cancellous bone and marrow (ICB $cancellous^{(R)}$), 3D-titanium membrane ($i-Gen^{(R)}$), resorbable collagen membrane (Ossix $plus^{(R)}$, Datum, Telrad, Israel), and A-PRF because there was approximately 7 mm labial dehiscence after implant placement. At the second stage of implant surgery six months after implant placement, healing abutment was connected after removing the 3D-titanium membrane. Nine months after the second stage of implant surgery was done, the final prosthesis was then delivered. In these two clinical cases, wound healing of the operation sites was uneventful. All implants were clinically stable without inflammation or additional bone loss, and there was no discomfort to the patient. With the non-resorbable titanium membrane, the ability of bone formation in the space was stably maintained in three dimensions, and A-PRF might influence soft tissue healing. This limited study suggests that aesthetic results can be achieved with GBR using 3D-titanium membrane and A-PRF in the anterior maxilla. However, long-term follow-up evaluation should be performed.

The effect of early membrane exposure on exophytic bone formation using perforated titanium membrane (천공형 티타늄 막의 조기 노출이 수직 골 형성에 미치는 영향)

  • Kim, Eun-Jung;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.237-249
    • /
    • 2007
  • This study was performed to evaluate the effect of membrane exposure on new bone formation when guided bone regeneration with perforated titanium membrane on atrophic alveolar ridge. The present study attempted to establish a GBR model for four adult beagle dog premolar. Intra-marrow penetration defects were created on the alveolar ridge(twelve weeks after extraction) on the mandibular premolar teeth in the beagle dogs. Space providing perforated titanium membrane with various graft material were implanted to provide for GBR. The graft material were demineralized bovine bone(DBB), Irradiated cancellous bone(ICB) and demineralized human bone powder(DFDB). The gingival flap were advanced to cover the membranes and sutured. Seven sites experienced wound failure within 2-3weeks postsurgery resulting in membrane exposure. The animals were euthanized at 4 weeks postsurgery for histologic and histometric analysis. The results of this study were as follows: 1. There was little new bone formation at 4 weeks postsurgery. irrespectively of membrane exposure. 2. There was significant relationship between membrane exposure and bone graft resorption(P<0.05), but no relation between membrane exposure and infiltrated connective tissue. 3. There was much bone graft resorption on DFDB than ICB and DBB. 4. The less exposure was on the perforated titanium membrane, the more dense infiltrated connective tissue was filled under the membrane when grafted with ICB and DBB. but there was no relationship between the rate of membrane exposure and the percentage of infiltrated connective tissue area and no relationship between the percentage of the area in the infiltrated connective tissue and in the residual bone graft. Within the above results, bone formation may be inhibited when membrane was exposed and ICB and DBB were more effective than DFDB as a bone graft material when guided bone regeneration.

Exophytic bone formation using porous titanium membrane combined with pins in rabbit calvarium. (핀 고정 천공형 티타늄막을 이용한 수직적 체조제증대술에 관한 연구)

  • Kim, Young;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.273-288
    • /
    • 2006
  • The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II, III, IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.

Osteopromotive effect of Titanium Reinforced-ePTFE membrane (티타늄강화 차폐막의 골유도 재생 효과)

  • Lee, Jean;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.711-722
    • /
    • 2004
  • The purpose of this study is to evaluate the regenerated bone histollogically using titanium reinforced ePTFE(TR-ePTFE) membrane and to investigate cell occlusiveness, wound stabilization and tissue integration of TR-ePTFE membrane. Adult male rabbits (mean BW 2kg) and TR9W (W.L.Gore&Associate.INC,USA) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. TR-ePTFE membrane was applied to defect. Then guided bone regeneration was carried out using TR-ePTFE membrane and resorbable suture. At 2,4,8,12 weeks after the surgery, animals were sacrificed. Nondecalcified specimens were processed for histologic analysis. The result and conclusion of this study were as follows: 1. TR-ePTFE membrane had good ability of biocompatibility and cell occlusiveness. 2. space making for guided bone regenerayion was good at TR-ePTFE membrane. 3. Tissue integration was not good at TR-ePTFE membrane. So, wound stabilization was not good. 4. At 8 weeks, 12 weeks after GBR procedure, bone formation was seen. From the above results, TR-ePTFE membrane fixed tightiy on alveolar bone might be recommended for the early bone formation.