• Title/Summary/Keyword: Guided bone regeneration

Search Result 288, Processing Time 0.021 seconds

Guided Bone Regeneration using Fibrin Glue in Dehiscence or Fenestration Defects Occurred by Maxillary Anterior Implants: Case Report (상악 전치부 임플란트 식립에 의한 열개 및 천공형 골결손 발생 시 조직 접착제를 이용한 골유도 재생술: 증례보고)

  • Chee, Young-Deok;Seon, Hwa-Gyeong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • Dental implants are universal restorative method on edentulous site in oral cavity and generally recognized by patients as well as clinicians. Rapid bone resorption of labial portion of maxillary anterior area is performed due to dental trauma, chronic periodontitis, and so on. Accordingly, Implants on maxillary anterior alveolar ridge with narrow labiopalatal width would lead to bony defects of dehiscence or fenestration. In this case, guided bone regeneration procedure is used to augment maxillary anterior alveolar ridge. It can have mechanical and biological advantages to mix tissue adhesive with bone graft materials in guided bone regeneration procedure. In these cases, when the dehiscence or fenestration defects was occurred by dental implants on maxillary anterior alveolar ridge with narrow labiopalatal width, guided bone regeneration procedures were performed with various combination of particle bone graft materials(allograft, xenograft, and alloplast) mixed with fibrin glue, excepting autogerous bone. We reported that all of 4 cases showed favorable alveolar ridge augmentations.

Biomaterial development for oral and maxillofacial bone regeneration

  • Sulzer, Lindsay S. Karfeld;Weber, Franz E.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.264-270
    • /
    • 2012
  • Many oral and maxillofacial bone defects are not self-healing. Guided bone regeneration (GBR), which uses a barrier membrane to prevent the soft tissues from invading the defect to enable slower-growing bone cells to penetrate the area, was developed as a therapy in the 1980s. Although there has been some success with GBR in some clinical situations, better treatments are needed. This review discusses the concept of GBR focusing on bioactive membranes that incorporate osteoconductive materials, growth factors and cells for improved oral and maxillofacial bone regeneration.

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

Silk Fibroin Membrane as Guided Bone Regeneration in Rat Calvarial Defects

  • Kweon, Hae-Yong;Kim, Seong-Gon;An, Jin-Hee;Shim, Hye-Won;Yang, Byoung-Eun;Kim, Jwa-Young;Jo, You-Young;Yeo, Joo-Hong;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.175-179
    • /
    • 2010
  • Silk fibroin membrane was prepared and examined to know the feasibility of SF membrane as guided bone regeneration. The morphology of silk membrane was flat and smooth surface. The conformation of silk fibroin was $\beta$-sheet structure. When the silk membrane was applied on the rat calvarial defect model, it showed significantly higher new bone formation than uncovered control in histomorphometric analysis. The silk membrane was covered by thin fibrotic tissue and there was not observed any inflammatory cells infiltration. In conclusion, silk fibroin membrane could be useful materials for guided bone regeneration.

Retrospective Clinical Study on Marginal Bone Loss of Implants with Guided Bone Regeneration (골유도재생술과 동시에 식립한 임플란트의 변연골 흡수량에 대한 후향적 고찰)

  • Park, Seul-Ji;Seon, Hwa-Gyeong;Koh, Se-Wook;Chee, Young-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.440-448
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate marginal bone loss of the alveolar crest on implants with or without guided bone regeneration and variables that have influenced. Methods: The clinical evaluation were performed for survival rate and marginal bone loss of 161 endosseous implants installed with guided bone regeneration (GBR) in 83 patients from September 2009 to October 2010 in relation to sex and age of patients, position of implant, implant system, length and diameter of implant. Study group (n=42) implant with GBR procedure, control group (n=41) implant without GBR technique. Simultaneous GBR approach using resorbable membranes combined with autogenous bone graft or freeze-dried bone allograft or combination. Radiographic examinations were conducted at healing abutment connection and latest visit. Marginal bone level was measured. Results: Mean marginal bone loss was 0.73 mm in study group, 0.63 mm in control group. Implants in maxillary anterior area (1.21 mm) were statistically significant in study group (P<0.05), maxillary posterior area (0.81 mm) in control group (P<0.05). Mean marginal bone loss 1.47 mm for implants with diameter 3.4 mm, 0.83 mm for implants of control group with diameter 4.0 mm (P<0.05). Some graft materials showed an increased marginal bone loss but no statistically significant influence of sex, implant type or length. Conclusion: According to these findings, this study demonstrated the amount of marginal bone loss around implant has maintained a relative stable during follow-up periods. We conclude that implants with GBR had similar survival rate and crestal bone level compared with implants in native bone.

Clinical application of bone graft materials in dental implant (임상가를 위한 특집 3 - 기능별 뼈이식재의 임프란트 적용방법)

  • Ahn, Kang-Min
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Dental implant restoration in partial or full edentulous state has become the standard treatment in recent years. Bone graft with guided bone regeneration technique has been regarded as one of the most reliable methods to restore the bone defect area due to periodontal disease or dental trauma. Bone graft materials and membrane are the essential component of guided bone regeneration; however, a variety of bone graft materials confuse us in implant dentistry. Autogenous bone is the recognized standards in implant dentistry owing to its osteogenesis potential. Despite of its disadvantages, grafting autogenous bone is the most reliable methods. Even though the development of new bone grafts materials, autogenous bone is useful in exposed implant thread and total lack of buccal or lingual bone. Allogenic, xenogenic and synthetic bone have the osteoconductive and osteoinductive potential. These materials could be used successfully in self-contained cavity such as sinus cavity and three-wall defects. In this article, application of bone graft material is suggested according to the function of bone graft materials.

The Comparative Study of Bone Grafts using Platelet Rich Plasma and Calcium Sulfate Barrier for the Regeneration of Infrabony Defects (혈소판 농축 혈장을 이용한 골 이식술과 Calcium sulfate를 이용한 조직유도 재생술이 골연하낭의 치료에 미치는 효과에 관한 비교 연구)

  • Kim, Kyung-Su;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.325-338
    • /
    • 2002
  • Bone graft using growth factors and guided tissue regeneration have been used for the regeneration of infrabony defects which caused by periodontal disease. Calcium sulfate which is one of the resorbable barrier materials used for guided tissue regeneration. Platelet rich plasma which is a easy method to obtain the growth factors had many common points but, platelet rich plasma was still studying. This study was the comparative study between bone graft using platelet rich plasma and guided tissue regeneration using calcium sulfate barrier material in clinical view. For the study, 28 sites(2 or 3 wall infrabony defects) were treated. 14 infrabony defects were received surgical implantation of BBP-calcium sulfate composite with a calcium sulfate barrier and the others received BBP mixed with platelet rich plasma. Clinical outcome was accessed 3 and 6 months of postsurgery. 1. There was no statistical difference between CS group and PRP group in pocket depth, gingival recession, clinical attachment level, and probing bone level at baseline. 2. There was statistically significant reduction in probing depth, clinical attachment level, and probing bone level at 3 and 6 months postsurgery(p<0.05). 3. In the probing depth and clincial attachment level PPR group had less improvement than CS group, but there was no statistically difference at 3 and 6 months postsurgery. 4. In the recession PPR group had less recession than CS group, but there was no statistically difference at 3 and 6 months postsurgery. 5. In the probing bone level PPR group had less improvement than CS group, but there was no statistically difference at 6 months postsurgery. In conclusion bone graft using platelet rich plasma and guided tissue regeneration using calcium sulfate barrier showed similar clinical improvement for the treatment of 2 or 3 wall infrabony defects.

Effect of deproteinized bovine bone mineral on cell proliferation in the procedure of guided bone regeneration (골유도재생술시 탈단백 우골이 세포증식에 미치는 영향)

  • In, Young-Mi;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.683-698
    • /
    • 2004
  • One of the bone substitutes now in routine use, deproteinized bovine bone mineral(DBBM), is regarded as resorbable and osteoconductive, but some studies refute this. The present study was performed to evaluate the effects of DBBM on guided bone regeneration using titanium membrane on the calvaria of rabbit. At 2 weeks, 4 weeks, 8 weeks, and 12 weeks after surgery, the animal was scrificed. Non-decalcified specimens were produced for histologic analysis. The results of this study were as follows : 1. Titanium membrane was biocompatible and capable of space-maintaining, but there was ingrowth of soft tissue through the pore of titanium membrane. 2. There was no resorption or reduction of DBBM with time. 3. Some of the DBBM particles were combined with newly formed bone. But, apart from host bone, a great part of the particles were surrounded by connective tissue. 4. The bone formation was slight vertically and restricted to superficial area of host bone. Whithin the above results, DBBM dose not appear to contribute to bone formation. DBBM may disturb the migration and proliferation of mesenchymal cell derived from host bone and increase the growth of connective tissue. Therefore, careful caution is needed on selection of bone graft material and surgical protocol at guided bone regeneration for implant placement.

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Comparative study on tissue responses of 3 resorbable membranes in rats (흡수성 차폐막의 조직반응에 관한 비교연구)

  • Hong, Seung-Bum;Kwon, Young-Hyuk;Lee, Man-Sup;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.475-488
    • /
    • 2002
  • The purpose of this study is to evaluate histologically the resorption and tissue response of various resorbable collagen membranes used for guided tissue regeneration and guided bone regeneration, using a subcutaneous model on the dorsal surface of the rat. In this study, 10 Sprague-Dawley male rats (mean BW 150gm) were used and the commercially available materials included acellular dermal matrix allograft, porcine collagen membrane, freeze-dried bovine dura mater. Animals were sacrificed at 2,6 and 8 weeks after implantation of various resorbable collagen membranes. Specimens were prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows: 1. Resorption : Inner portion of porcine collagen membrane was resorbed a lot at 6 weeks, but its function was being kept for infiltration of another tissues were not observed. Freeze-dried bovine dura mater and acellular dermal allograft were rarely resorbed and kept their structure of outer portion for 8 weeks. 2. Inflammatory reactions : Inflammatory reaction was so mild and foreign body reaction didn't happen in all of resorbable collagen membranes, which showed their biocompatibility. 3. In all of resorbable collagen membranes, multinuclcated giant cells by foreign body reactions were not observed. Barrier membranes have to maintain their function for 4-6 weeks in guided tissue regeneration and at least 8 weeks in guided bone regeneration. According to present study, we can find all of the resorbable collagen membranes kept their function and structure for 8 weeks and were rarely resorbed. Foreign body reaction didn't happen and inflammatory reaction was so mild histologically. Therefore, all of collagen membranes used in this experiment were considered proper resorbable membranes for guided tissue regeneration and guided bone regeneration.