• Title/Summary/Keyword: Guide Sensor

Search Result 203, Processing Time 0.018 seconds

Serviceability Assessment of a K-AGT Test Bed Bridge Using FBG Sensors (광섬유 센서를 이용한 경량전철 교량의 사용성 평가)

  • Kang, Dong-Hoon;Chung, Won-Seok;Kim, Hyun-Min;Yeo, In-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2007
  • Among many types of light rail transits (LRT), the rubber-tired automated guide-way transit (AGT) is prevalent in many countries due to its advantages such as good acceleration/deceleration performance, high climb capacity, and reduction of noise and vibration. However, AGT is generally powered by high-voltage electric power feeding system and it may cause electromagnetic interference (EMI) to measurement sensors. The fiber optic sensor system is free from EMI and has been successfully applied in many applications of civil engineering. Especially, fiber Bragg grating (FBG) sensors are the most widely used because of their excellent multiplexing capabilities. This paper investigates a prestressed concrete girder bridge in the Korean AGT test track using FBG based sensors to monitor the dynamic response at various vehicle speeds. The serviceability requirements provided in the specification are also compared against the measured results. The results show that the measured data from FBG based sensors are free from EMI though electric sensors are not, especially in the case of electric strain gauge. It is expected that the FBG sensing system can be effectively applied to the LRT railway bridges that suffered from EMI.

The Development of a Energy Monitoring System based on Data Collected from Food Factories (식품공장 수집 데이터 기반 에너지 모니터링 시스템 개발)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1001-1006
    • /
    • 2023
  • Globally, rising energy costs and increased energy demand are important issues for the food processing and manufacturing industries, which consume significant amounts of energy throughout the supply chain. Accordingly, there is a need for the development of a real-time energy monitoring and analysis system that can optimize energy use. In this study, a food factory energy monitoring system was proposed based on IoT installed in a food factory, including monitoring of each facility, energy supply and usage monitoring for the heat treatment process, and search functions. The system is based on the IoT sensor of the food processing plant and consists of PLC, database server, OPC-UA server, UI server, API server, and CIMON's HMI. The proposed system builds big data for food factories and provides facility-specific monitoring through collection functions, as well as energy supply and usage monitoring and search service functions for the heat treatment process. This data collection-based energy monitoring system will serve as a guide for the development of a small and medium-sized factory energy monitoring and management system for energy savings. In the future, this system can be used to identify and analyze energy usage to create quantitative energy saving measures that optimize process work.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.