• Title/Summary/Keyword: Guidance rocket

Search Result 18, Processing Time 0.03 seconds

Thrust Vector Control for a Launch Vehicle (발사체 추력벡터 제어)

  • 최재원;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.610-613
    • /
    • 1995
  • In addition to propulsive force to a flying vehicle, a rocket propulsion system can provide moments ro rotatate the flying vehicle and thus provide control of the vehicle's attitude and flight path. By controlling the direction of the thrust vectors, it is possible to control a vehicle's pitch, yaw, and roll motions. In this paper, we will introduce general thrust vector control mechanisms.

  • PDF

Development of application for guidance and controller unit for low cost and small UAV missile based on smartphone (스마트폰을 활용한 소형 저가 유도탄 유도조종장치용 어플리케이션 개발)

  • Noh, Junghoon;Cho, Kyongkuk;Kim, Seongjun;Kim, Wonsop;Jeong, Jinseob;Sang, Jinwoo;Park, Chung-Woon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.610-617
    • /
    • 2017
  • In the recent weapon system trend, it is required to develop small and low cost guidance missile to track and strike the enemy target effectively. Controling the such small drone typed weapon demands a integrated electronic device that equipped with not only a wireless network interface, a high resolution camera, various sensors for target tracking, and position and attitude control but also a high performance processor that integrates and processes those sensor outputs in real-time. In this paper, we propose the android smartphone as a solution for that and implement the guidance and control application of the missile. Furthermore, the performance of the implemented guidance and control application is analyzed through the simulation.

Covered Stenting Is an Effective Option for Traumatic Carotid Pseudoaneurysm with Promising Long-Term Outcome

  • Wang, Kai;Peng, Xiao-xin;Liu, Ao-fei;Zhang, Ying-ying;Lv, Jin;Xiang, Li;Liu, Yun-e;Jiang, Wei-jian
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.5
    • /
    • pp.590-597
    • /
    • 2020
  • Objective : Covered stenting is an optional strategy for traumatic carotid pseudoaneurysm, especially in malignant conditions of potential rupture, but the long-term outcomes are not clear. Our aim was to determine if covered stenting is an effective option for traumatic carotid pseudoaneurysm with promising long-term outcomes. Methods : Self-expanding Viabahn and balloon-expandable Willis covered stents were separately implanted for extra- and intracranial traumatic carotid pseudoaneurysm. The covered stent was placed across the distal and proximal pseudoaneurysm leakage under roadmap guidance. Procedural success was defined as technical success (complete exclusion of the pseudoaneurysm and patency of the parent artery) without a primary end point (any stroke or death within 30 days after the procedure). Long-term outcomes were evaluated as ischemic stroke in the territory of the qualifying artery by clinical follow-up through outpatient or telephone consultation and as the exclusion of the pseudoaneurysm and patency of the parent artery by imaging follow-up through angiography. Results : Five patients with traumatic carotid pseudoaneurysm who underwent covered stenting were enrolled. The procedural success rate was 100%. No ischemic stroke in the territory of the qualifying artery was recorded in any of the five patients during a mean clinical follow-up of 44±16 months. Complete exclusion of the pseudoaneurysm and patency of the parent artery were maintained in all five patients during a mean imaging follow-up of 39±16 months. Conclusion : Satisfactory procedural and long-term outcomes were obtained, suggesting that covered stenting is an effective option for traumatic carotid pseudoaneurysm.

The Study about Conditions for Stable Engine Startup on Launch Vehicle (발사체 엔진의 안정적인 시동 조건에 대한 연구)

  • Jung, Young-Suk;Lee, Han-Ju;Oh, Seung-Hyub;Park, Jeong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.432-435
    • /
    • 2008
  • Launch vehicle for injecting the satellite into its orbit is composed with propulsion system, guidance and navigation system, telemetry and so on. Among the others, the propulsion system is the most important part, because that is the key factor of failure of launch vehicle. Especially, the most of failures were occurred in time of engine startup. Therefore, the study of the conditions for stable engine startup is needed at the first step of development. The many researches were accomplished for mathematical modeling, stable startup engine and control of liquid propellant rocket engine. But the cavitation problem that can be occurred at an inlet of pump associated with propellant feeding system wasn't considered in these works. In this paper, propulsion system model was integrated with clustered engines and propellant feeding system for the simulations of engine startup. As the results of simulations, the requirements were deduced for the stable engine startup without the cavitation at an inlet of pump.

  • PDF

Numerical investigation of an add-on thrust vector control kit

  • AbuElkhier, Mohamed G.;Shaaban, Sameh;Ahmed, Mahmoud Y.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • Instead of developing new guided missiles, converting unguided missile into guided ones by adding guidance and controlkits hasbecome aglobaltrend.Ofthemost efficient andwidelyused thrust vector control(TVC) techniquesin rocketry isthe jet vanes placed inside the nozzle divergentsection. Upon deflecting them, lift created on the vanesistransferred to the rocket generating the desired control moment. The presentstudy examinesthe concept of using an add-on jet vaneTVC kit to a plain nozzle.The impact of adding the kit with different vaneslocations and deflectionanglesisnumericallyinvestigatedbysimulatingtheflowthroughthenozzlewiththekit.Twohingelocations are examined namely, at 24% and 36% of nozzle exit diameter. For each location, angles of deflection namely 0°, 5°, 10°, and 15° are examined. Focus is made on variation of control force, thrust losses, lift and drag on vanes, jet inclination, and jetflow structure withTVCkit design parameters.

The Tendency in Solid Propellant Technology for Missiles (유도탄용 고체 추진제 기술의 발전 추세)

  • Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.112-120
    • /
    • 2005
  • The solid propellants have been most widely used for the military rockets or missiles all over the world and the efforts have been focused on the enhancement of propellant performance up to 1980s. lately in company with the distinguished development in the intelligence and communication technology, the more accurate guidance as well as maneuverability has been required in the military weapon system. To meet the requirements such as a high maneuverability, insensitiveness, or stealth of missile, the researches have been doing to develop the solid propellants which have a quality of ultra-fast burning rate, insensitiveness, low signature or the like.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF

The Analysis of Perchlorate in Nakdong River and Tap Water (낙동강 수계 및 수돗물에서의 Perchlorate($ClO_4^-$) 분석)

  • Kim, Hwa-Bin;Oh, Jeong-Eun;Lee, Sung-Yun;Cho, Jae-Weon;Snyder, Shane
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.776-781
    • /
    • 2006
  • Perchlorate ion($ClO_4^-$), which is present in the solid propellant for rocket, herbicide and some fertilizers. Perchlorate inhibits iodide uptake by the human thyroid gland. Impairment of thyroid function in expectant mothers may impact the fetus and result in effects including cerebral palsy, give rise to thyroid gland cancer. The US EPA(Environmental Protection Agency) adopted a reference dose(RfD) for perchlorate 0.0007 mg/kg-day, and this guidance lead to a Drinking Water Equivalent Level(DWEL) of 24.5 ${\mu}g/L$. The studies about perchlorate are actively performed in foreign countries, especially in USA but there is no study which surveyed the perchlorate contamination in Korea. Therefore, this study was done to investigate perchlorate contamination in Nak-dong river and tap water. The perchlorate was detected in Nakdong river and ranged from ND to 278.4 ${\mu}g/L$. The highest concentration was observed in Kumichon. The perchlorate concentration was decreased with the down stream of Nakdong river. The perchlorate concentration in tap water was varied with the cities and the concentration levels were $ND{\sim}34.1$ ppb. The highest perchlorate concentration was observed in DalsuGoo in Daegu and the similar concentration($9{\sim}11$ ${\mu}g/L$) was detected in most of the districts in Busan. The result of this study suggests that there is a perchlorate source near the Nakdong river and the urgent policy is needed to control perchlorate for the cities which are supplied from Nakdong river as for their tap water.