• Title/Summary/Keyword: Guidance/Navigation

Search Result 327, Processing Time 0.036 seconds

Precise Impact Angle Control Using Analytic Solution of Biased Proportional Navigation with Single Dynamic Lag (동적지연을 포함하는 편향 비례항법 유도루프의 해석 해를 이용한 정밀 충돌각 제어)

  • Moon, Han-Bit;Ra, Won-Sang;Whang, Ick-Ho;Kim, Yong-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1736-1737
    • /
    • 2011
  • This paper deals with the problem of precise impact angle control of an actual homing missile guided by biased proportional navigation (BPN). To do this, the BPN guidance loop including dynamic lag is modeled as the confluent hyper-geometric differential equation and its analytic solution is derived. Based on the solution, a systematic way to determine the bias constant is newly devised. Different from the existing BPN solution obtained by ignoring the dynamic lag, the proposed one can exactly describe the behavior missile before target interception. hence it is drastically improved the angle constrained terminal guidance performance.

  • PDF

Mobile Art Park Guidance Application using Mobile MAP Open API

  • Jwa, Jeong-Woo;Ko, Sang-Bo;Lee, Deuk-Woo
    • International Journal of Contents
    • /
    • v.7 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In this paper, we develop a mobile MAP open API using HTML5 local storage and the W3C geolocation API. The mobile MAP open API consists of the basic JavaScript MAP API, offline navigation API, and multimedia POI (mPOI) API. The basic JavaScript MAP API creates a map and controls, rotates, and overlays data on the map. The offline navigation API is developed using HTML5 local storage and web storage. The mobile web application downloads and stores mPOIs of works of art to local storage or web storage from a web server. The mPOI API is developed using HTML5 video and audio APIs. We develop a mobile art park guidance application using the developed mobile MAP open API.

Expanded Guide Circle-based Obstacle Avoidance for the Remotely Operated Mobile Robot

  • Park, Seunghwan;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1034-1042
    • /
    • 2014
  • For the remote operation of the mobile robot, the human operator depends fully on the sensory information which is the partial information of the workspace of the mobile robot. It is usually very hard to fully manually operate the mobile robot in this situation. We propose the efficient guidance navigation method for improving the efficiency of the remote operation with the expanded guide circle using the sensory information. The guidance command is generated from the proposed algorithm using the expanded guide circle. We evaluated the performance of the proposed algorithm using the experiments.

Performance Analysis of Navigation System for Guidance and Control of High Speed Underwater Vehicle System (고속 수중운동체 정밀 유도제어를 위한 항법성능 분석)

  • Hong, Sung-Pyo;Han, Yong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2227-2232
    • /
    • 2013
  • To obtain the system requirement specification in the beginning of the precision guidance system development, the effectiveness and reliability analysis for the system are necessary. The main purpose of this research is to obtain the system requirement specification for the high speed unmanned underwater vehicles by carrying out the effectiveness analysis using the modeling and simulation scheme. The effectiveness is position error for target position. Reaching accuracy is expected to be affected by the navigation sensor parameter. Assume that the navigation sensors that is consist of inertial navigation system(INS) and doppler velocity log(DVL) is the parameter. To analyze the effectiveness of each parameter, Monte-Carlo numerical simulation is performed in this research. The effectiveness analysis is carried out using circular error probability(CEP) and variance analyze scheme. Considering the cost function, the specification of the navigation sensor is provided. The cost function is consist of the INS and DVL specification and the price of those sensors.

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

Line Tracking Method of AGV using Sensor Fusion (센서융합을 이용한 AGV의 라인 트레킹 방법)

  • Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin;Bae, Sun-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • This paper present to study the guidance system as localization technique using sensor fusion and line tracking technique using virtual line for AGV(autonomous guided vehicle). An existing AGV could drive on decided line only. And representative guidance systems of such guidance system are magnet-gyro guidance and wired guidance. However, those have had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the localization system which is fused with a laser navigation and gyro, encoder. The system is robust against noise, and flexible according to working environment through sensor fusion. For line tracking of laser navigation without wire guidance, we set the virtual line in program, and design the driving controller based on difference of angle and distance between AGV's position and decided virtual line. To experiment, we use the AGV which is made by ourselves, and experiment the line tracking repeatedly on same experimental environment. In result, maximum distance error between decided virtual line and AGV's position was less than 49.93mm, and we verified that the proposed system is efficient for line tracking of actual AGV.

Aircraft Collision-Avoidance/Guidance Strategy in Dynamic Environments for Planar Flight (2차원 평면에서 이동장애물에 대한 항공기의 유도/회피기동 연구)

  • Rhee, Ihn-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.69-75
    • /
    • 2004
  • An avoidance/guidance problem of an aircraft against moving obstacle is considered in two dimensional space. The aircraft is modelled as a point mass flying with constant speed. The lateral acceleration is assumed the control input. Artificial potential functions are applied to the terminal point and moving obstacles in order that repulsive forces and an attractive force are produced by the obstacles and the terminal point respectively. A real time guidance/avoidance law is proposed by using the potential forces and relative velocity. The guidance law for a logarithm potential function results the well-known proportional navigation law. The avoidance control command is inverse proportional to the time-to-go to the obstacle and turns the aircraft toward the negative direction of the line-of-sight change. The performance of the proposed guidance/avoidance law is verified with simulations.

A Hybrid Guidance Law for a Strapdown Seeker to Maintain Lock-on Conditions against High Speed Targets

  • Lee, Chae Heun;Hyun, Chul;Lee, Jang Gyu;Choi, Jin Yung;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.190-196
    • /
    • 2013
  • This paper proposes a new guidance law, which considers the Field of View (FOV) of the seeker when a missile has a strapdown seeker mounted instead of a gimbal seeker. When a strapdown seeker, which has a narrow FOV, is used for tracking a target, the FOV of the seeker is an important consideration for guidance performance metrics such as miss distance. We propose a new guidance law called hybrid guidance (HG) to address the shortcomings of conventional guidance laws such as proportional navigation guidance (PNG), which cannot maintain lock-on conditions against high speed targets due to the narrow FOV of the strapdown seeker. The aim of the HG law is to null miss distance and to maintain the look angle within the FOV of the strapdown seeker. In order to achieve this goal, we combine two guidance laws in the HG law. One is a PNG law to null the LOS rate, and the other is a sliding mode guidance (SMG) law derived to keep the look angle within the FOV by employing a Lyapunov-like function with a sliding mode control methodology. We also propose a method to switch these two guidance laws at certain look angles for better guidance performance.

Pedestrian Network Models for Mobile Smart Tour Guide Services

  • Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The global positioning system (GPS)-enabled mobile phones provide location-based applications such as car and pedestrian navigation services. The pedestrian navigation services provide safe and comfortable route and path guidance for pedestrians and handicapped or elderly people. One of the essential components for a navigation system is a spatial database used to perform navigation and routing functions. In this paper, we develop modeling and categorization of pedestrian path components for smart tour guide services using the mobile pedestrian navigation application. We create pedestrian networks using 2D base map and sky view map in urban area. We also construct pedestrian networks and attributes of node, link, and POI using on-site GPS data and photos for smart pedestrian tour guide in the major walking tourist spots in Jeju.