• Title/Summary/Keyword: Growth responses

Search Result 1,660, Processing Time 0.035 seconds

Growth Responses and Regrowth to Low Temperature of Nine Native Moss Species

  • Gong, Gyeong Yeop;Jeong, Kyeong Jin;Lee, Sang Woo;Yun, Jae Gill
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.575-582
    • /
    • 2019
  • Moss is used as an important material in indoor landscaping as well as outdoor landscaping. Moss is vivid green during growth and excellent in ornamental value. But when temperature drops, moss stops growth, turns brown or loses its ornamental value. In the present experiment, for the purpose of classifying native mosses according to the growth response to low temperature, the temperature of the plant growth chamber was set to 15℃/5℃ (16h/8h, day/night) and 5℃ (24h) for 8 weeks using nine native moss species. Thereafter, the temperature of the plant growth chamber was set to 20℃, and then the changes of moss block area and moss color were measured. The changes of moss block area and moss color were measured using a Photoshop program, after each moss block was photographed. As a result, Atrichum undulatum (Hedw.). Beauv., Etodon luridus (Griff.) A. Jaeger, Bachythecium plumosum (Hedw.) Schimp, Plagiomnium cuspidatum (Hedw.) T.J. Kop, and Hypnum plumaeforme Wilson showed a small decrease in moss block area at low temperature, and their recovery were the fastest at 20℃. These three species had higher green values at low temperature compared to other species, and the greenness increased rapidly at 20℃. On the other hand, Atrichum undulatum (Hedw.). Beauv., Marchantia polymorpha L., and Thuidium cymbifolium (Mitt.) A. Jaeger showed the smallest block area at low temperature and the lowest recovery even at 20℃. Their green values also decreased significantly at low temperature, and maintained low green value even at 20℃. These results showed that these three moss species are sensitive to low temperature. The remaining Myuroclada maximowiczii, Plagiomnium cuspidatum, and H. erectiusculum showed moderate responses to low temperature compared to other six species of mosses.

Influence of Soil Zone Temperature on Growth of Grapevines(Vitis spp) (지온이 포도의 생육에 미치는 영향)

  • 김진한
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.207-211
    • /
    • 2000
  • This study was conducted to investigate the effect of soil zone temperature on the growth responses of two grapevine varieties. Campbell Early was cultivated under unprotected environment and Black Olympia was cultivated in the greenhouse. As responses, growth, photosynthetic rate and contents of mineral elements as affected by four different soil zone temperatures (10, 15, 20, and $25^{\circ}C$)were examined. Weights of leaves, stems and roots were higher at 20 and $25^{\circ}C$ than at 10 or 15$^{\circ}C$ root zone temperature in both varieties. Chlorophyll concentration and photosynthetic rate were the greatest at 2$0^{\circ}C$ root zone temperature. Contents of phosphate, potassium, and calcium increased with increasing root zone temperature.

  • PDF

Growth responses of sugar palm (Arenga pinnata (Wurmb.) Merr.) seedlings to different shading levels

  • Furqoni, Hafith;Junaedi, Ahmad;Wachjar, Ade;Yamamoto, Yoshinori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.49-49
    • /
    • 2017
  • Sugar palm (Arenga pinnata (Wurmb.) Merr.) grows naturally under shading of tree canopy, therefore shading levels take a main role for an optimal growth of sugar palm seedlings. The study was conducted to examine the effect of shading levels on the seedlings growth of sugar palm for up to 11 months under four shading levels: S0 (100% of full sunlight or non-shading), S1 (32% shading level), S2 (56% shading level), and S3 (64% shading level). Sugar palm seedlings grown under the shade (32, 56, and 64%) showed better plant height, stem diameter, leaf size, petiole and rachis length, chlorophyll content, root fresh and dry weights, root volume, and total biomass than those grown without shading. Although there were no significant different responses among the shading treatments on plant height, biomass dry weight, leaf morphological characters, chlorophyll content, and SPAD value, the S2 treatment showed a significant effect on a better root characters. Therefore, it can be concluded that the S2 treatment, 56% shading level, is an optimal shading condition for sugar palm seedlings.

  • PDF

Changes in Quality and Vigour of Cucumber and Paprika Transplants as Affected by Storage Temperature under Dark Conditions

  • Kwack, Yurina;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.633-637
    • /
    • 2015
  • Cucumber and paprika transplants were stored at 9, 12, 15, and $18^{\circ}C$ under dark conditions for 15 days and then grown in a greenhouse for 14 days after transplanting. To determine the effects of low storage temperature and long-term continuous darkness on the quality and vigour of transplants, we investigated the quality of transplants during storage and the growth of stored transplants after transplanting. In cucumber transplants, decreasing storage temperature reduced stem elongation and decrease in SPAD value. The quality of cucumber transplants stored at $9^{\circ}C$ was well preserved during storage, but they did not survive after transplanting due to chilling damage. Growth and development after transplanting were significantly greater when cucumber transplants were stored at $12^{\circ}C$. In paprika transplants, the quality of transplants did not significantly differ before and after storage. After transplanting, there was no significant difference in the survival rate and growth, but the number of flower buds was greater in the paprika transplants stored at lower temperatures (9 and $12^{\circ}C$). These results indicate that the responses of transplants to the conditions of low temperature and darkness differed between cucumber and paprika, and storage temperature in darkness must be controlled carefully considering species-specific responses to reduce quality deterioration during storage and improve the recovery of transplants after transplanting.

The Effect of Fibrillar Collagen on Bony Healing of Calvarial Defect in Rats (골 조직 치유과정에서 Collagen 막의 효과)

  • Kim, Jae-Bung;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.355-373
    • /
    • 1999
  • Many researches have been reported that collagen as cellular stroma, matrix of grafting materials, mediator of agents for the purpose of promoting healing process invivo, but the responses in vivo were seen various. The goal of this experiment is to assess the effect of collagen on bony healing, through histological evaluation of implanted collagen on the calvarial defect in rats. 2-month-old Sprague-Dawley, 24 rats were used and 12 rats assigned to each group of control and test. Defect of 5mm in diameter was made on the calvarial bone with trephine bur. Following thorough saline rinse, defect of control group was left in empty and that of experimental group was filled with fibrillar collagen($COLLATAPE^{(R)}$, COLLA-TEC. INC. U.S.A.) soaked in saline. 3 rats in each group were sacrificed at 3, 7, 14, 21 days after operation respectively, and the tissue blocks were prepared for light microscope with H-E for evaluation of overall healing, with TRAP(tartrate resistant acid phosphatase) for evaluation of osteoclastic activity and with immunohistochemical staining for macrophages. The results were as follows : 1. In the control group, inflammatory responses were disappeared at day 14, but, in the experimental group inflammatory infiltrates were reduced at day 21. Thus, the experimental group showed more severe soft tissue inflammation than control group. 2. Both control and experimental group showed slight appositional growth at day 7 and gradual bony growth to 21th day. But, complete bony healing of the defect was not shown. There was no significant difference in bony healing between control and experimental group 3. Specific response of macrophages for implanted collagen was observed at day 14 in the experimental group. In conclusion, although fibrillar collagen caused inflammation of soft tissue during initial healing period, inflammatory responses by fibrillar collagen didn't inhibit bony regeneration and implanted collagen was biodegradaded by macrophages. Thus, we expect that fibrillar collagen can be used for useful mediator of graft materials or growth factors.

  • PDF

Effects of Dietary Supplementation of a Meju, Fermented Soybean Meal, and Aspergillus oryzae for Juvenile Parrot Fish (Oplegnathus fasciatus)

  • Kim, Sung-Sam;Galaz, German Bueno;Pham, Minh Anh;Jang, Ji-Woong;Oh, Dae-Han;Yeo, In-Kyu;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.849-856
    • /
    • 2009
  • In this study, dietary supplementations of Korean Meju, fermented soybean meal (F-SBM) by Aspergillus oryzae, and A. oryzae itself were evaluated on growth performance, feed utilization, immune responses and phosphorus availability in juvenile parrot fish, a marine aquaculture fish species. Four isonitrogenous and isocaloric diets were formulated to contain 8% soybean meal (control diet), 4% Meju (50% soybean meal was replaced by Meju), 4% F-SBM (50% soybean meal was replaced by F-SBM), or 0.08% A. oryzae itself. One of the four experimental diets was fed to triplicate groups of fish for 8 weeks. At the end of the feeding trial, no significant differences were found in growth performances and feed utilization. Red blood cell counts in the fish fed the A. oryzae diet were significantly higher than that of fish fed the control diet. The antioxidant activity in Meju diet was significantly higher than that of the control and A. oryzae diets. Fish fed Meju and F-SBM diets showed numerically higher antioxidant activity of serum compared to that of fish fed the control diet, even though it was not significant. Liver superoxide dismutase activity of fish fed the test diets was significantly higher than that of fish fed the control diet. The apparent digestibility coefficients of protein of fish fed all the diets were not significantly different. Phosphorus absorption was numerically increased in fish fed F-SBM and A. oryzae diets compared to that of fish fed the control diet. This study indicates that the fermentation process of soybean meal does not impair growth performance and feed utilization in parrot fish. The fermentation process could enhance the availability of phosphorus in soybean meal and non-specific immune responses of parrot fish.

Avian Gut Immune System and Local Responses to Eimerial Parasites (조류의 장내 면역체계와 콕시듐(Eimeria)기생충들에 대한 국소면역 반응)

  • Lillehoj, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.131-144
    • /
    • 1999
  • Coccidiosis, an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria seriously impairs the growth and feed utilization of livestock and poultry. Due to complex life cycle of organism and intricate host immune responses to Elmeria, coccidia vaccine development has been difficult. Understanding of basic imunobiology of pertinent host-parasite interactions is necessary for the development of novel control strategy. Although chickens infected with Eimeria spp. produce parasite-specific antibodies in both the circulation and mucosal secretions, antibody mediated responses play a minor role in protection gainst coccidiosis. Rather, increasing evidence show that cell-mediated immunity plays a major role in resistance to coccidiosis. T-lymphocytes appear to respond to coccidiosis both through cytokine production and a direct cytotoxic attack on infected cells. The exact mechanisms by which T-cells eliminate the parasites, however, remain to be investigated. Since it is crucial to understand the intestinal immune system in order to develop an immunological control strategy against any intestinal immune system in order to develop an immunological control strategy against any intestinal diseases, this presentation will summarize our current understanding of the avian intestinal immune system and mucosal immune responses to Eimeria, to provide a conceptual overview of the complex molecular and cellular events involved in intestinal immune responses to enteric pathogens.

  • PDF

Effects of Nitrogen and Sodium on Growth in Phaeodactylum tricornutum (Bacillariophyceae)

  • Lee Soon Jeong;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.151-155
    • /
    • 2000
  • Phaeodactylum tricornutum (Bacillariophyceae) is a marine diatom which has been supplied as a food of bivalves. In this study, growth responses of P. tricornutum to some nitrogen sources and sodium were investigated by measuring cell number and contents of chlorophyll a in culture. In medium with nitrogen and sodium, brisk cell division occurred and maximum growth rate was respectively found in the medium with 150 mg/l of nitrate and 10 mg/l of ammonium and urea. At 10-500 mg/l ammonium and urea and 200-500 mg/l nitrate, specific growth rate decreased slightly. However, no cell division observed in sodium-deficient medium, regardless of presence or absence of nitrogen. This suggests that sodium is required for the nitrogen uptake of P. tricornutum, resulting nitrogen uptake leading to cell division. Also the upper limits of ammonium and nitrate for the growth of P. tricornutum seem to be 10 mg/l and 500 mg/l, respectively.

  • PDF

Effects of Interspecific Interactions of Arbuscular Mycorrhizal Fungi on Growth of Soybean and Corn

  • Jeong, Hyeon-Suk;Lee, Jai-Koo;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.34-37
    • /
    • 2006
  • Growth responses of Zea mays and Glycine max to colonization by mixture of combination of three species of arbuscular mycorrhizal (AM) fungi, two species of Glomus and a species of Scutellospora were compared. In Zea mays, plants inoculated with single species of AM fungi showed significantly higher in dry weight than non-mycorrhizal plant for all three AM fungal species. Also, growth of plants inoculated with spores of two species of AM fungi was significantly higher than nonmycorrhizal control except for plants inoculated with two Glomus species. When three species of AM fungi were inoculated, the plants showed the highest growth. In Glycine max, plants with single AM fungal species inoculation were not significantly different in plant growth from nonmycorrhizal plants. When the plants were inoculated with combination of two or more AM fungal species, their growth significantly increased compared to nonmycorrhizal plants. In both plant species, mycorrhizal root colonization by Scutellospora species was significantly lower than by Glomus species.

An Investigation Into the Relationship Between Metabolic Responses and Energy Regulation in Antibody-Producing Cell

  • Sun, Ya-Ting;Zhao, Liang;Ye, Zhao-Yang;Fan, Li;Liu, Xu-Ping;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1586-1597
    • /
    • 2013
  • Energy-efficient metabolic responses were often noted in high-productive cultures. To better understand these metabolic responses, an investigation into the relationship between metabolic responses and energy regulation was conducted via a comparative analysis among cultures with different energy source supplies. Both glycolysis and glutaminolysis were studied through the kinetic analyses of major extracellular metabolites concerning the fast and slow cell growth stages, respectively, as well as the time-course profiles of intracellular metabolites. In three cultures showing distinct antibody productivities, the amino acid metabolism and energy state were further examined. Both the transition of lactate from production to consumption and steady intracellular pools of pyruvate and lactate were observed to be correlated with efficient energy regulation. In addition, an efficient utilization of amino acids as the replenishment for the TCA cycle was also found in the cultures with upregulated energy metabolism. It was further revealed that the inefficient energy regulation would cause low cell productivity based on the comparative analysis of cell growth and productivity in cultures having distinct energy regulation.