• Title/Summary/Keyword: Growth pressure

Search Result 1,697, Processing Time 0.032 seconds

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

Industrial restructuring and uneven regional development in the 1980s (산업구조조정과 지역불균등발전 : 1980년대)

  • ;Choi, Byung-Doo
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.2
    • /
    • pp.137-165
    • /
    • 1994
  • Structural adjustment of industry (or industrial restructuring) seems to be inherent in the process of capitalist economic development, which tends to be proceeded with shifts from one stage to another in order to overcome structural crises generated in each stage. The structural adjustment of industry is necessarily accompanied with regional restructuring, since it is not only projected on spece, but also mediated by space. Such a restructuring necessitates industrial and uneven regional devlopment through which capital can seek excessive profits over the rate of socio-spatial average. The industrial restructuring and uneven regional development in the 1980s in Korea can be seen as a process in which capital attempted with a strong support of the govenment to overcome the crises in the end of 1970s and hence to go on rapid economic growth. In this process, capital, especially monopoly capital concentrated into few conglomerates, pursued both extensive expansion and intensive development of industry simultaneously. In results, the Korean economy could eliminate some of peripheral characters and maturate the Fordist accumulation system. The extensive expansion of the Korean industry in the 1980s was stimulated mainly through the enlargement and adjustment of investment for equipment facilities which was planned to exclude or rationalize traditional light industries on some places, and to continue rapid growth of key heavy-chemical industries, especially of fabricated metal industry, on other places. In this process, keeping mainly the existing developmental axis which polarized the Seoul Metroplitan region and the Southeast region in Korea, the enhancing spatial mobiiity of capital and the further differentiating division of labour enforced a tendency of concentration of all types of industry in the Seoul Metropolitan region, and at the same time provoked the diffusion of some industries over Jeolla and Chungchong regions in a considerable extent. The intensive development of industriai structure in the 1980s was pursued through the strategic encouragement of subcontracting small firms mainly which produced assembling components, the technical enhancement and factory (semi-) automation, and the enrichment of service industries for estate management, finance, distribution and retailing which supported and complemented the production of goods. In this process, enabling capital to extend and elaborate its domination over space through the reorganization of regulating systems, the Fordist division of labour generated a socio-spatial hierarchy in the nation-wide scale that characterized: the Seoul Metropolitan region as an overmaturated (or overarching) Fordist region performing the conceptive functions of management, research and development, in which all types of industry (including service industries) tended to be reconcentrated; Kyungsang region as a maturated Fordist region with excutive branches of large conglomerates and with subcontracting firms around them which produced standardized products through the automized production processes in secialized Fordist industries or rationalized traditional industries; and Jeolla and Chungchong regions as newly devloping Fordist regions with newly migrated branches and some subcontracting small firms-in relatively older Fordist industries or partly rationalized traditional industries. From these analyses, it can be argued that the structural adjustment of the Korean industry in the 1980s, which had carried out both through the extensive expansion and the intensive deveiopment, strengthened further uneven regional development process, even though it appears to have reduced apparently the economic and regional disparity by balancing numerically large and small firms and by extending the Fordist industrial space nation-wideiy. And it seems more persuasive to see that the Korean industrial structure in the 1980s maturated the Fordist system of accumulation, but not yet transformed towards the post-Fordist (or the so-called flexible) accumulation system, even though the Korean economy in the 1990s seems to be under a pressure of restructuring towards the latter system.

  • PDF

Estimation of Domestic Greenhouse Gas Emission of Refrigeration and Air Conditioning Sector adapting 2006 IPCC GL Tier 2b Method (국내 냉동 및 냉방부문 온실가스 배출량 산정 - 2006 IPCC GL Tier 2b 적용 -)

  • Shin, Myung-Hwan;Lyu, Young-Sook;Seo, Kyoung-Ae;Lee, Sue-Been;Lim, Cheolsoo;Lee, Sukjo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2012
  • The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the $CO_2$ emission, Especially fluorinated greenhouse gases (HFCs, PFCs, $SF_6$) are lacking research to build the greenhouse gas inventories to identify emissions sources and collection of the applicable collection activities data. In this study, with the refrigeration and air conditioning sector being used to fluorine refrigerant(HFCs) as the center, greenhouse gas emission estimation methodology for evaluating the feasibility of using this methodology look over and mobile air conditioning, fixed air conditioning, household refrigeration equipment, commercial refrigeration equipment for the greenhouse gas emissions were calculated. First look at in terms of methodology, refrigeration and air conditioning sector GHG emissions in developing country-specific emission factors and activity data of the industrial sector the construction of the DB is not enough, it's 2006 IPCC Guidelines Tier 2a (emission factor approach) rather than the Tier 2b (mass balance approach) deems appropriate, and each detail by process, sectoral activity data more accurate, if DB is built Tier 2a (emission factor approach) can be applied will also be judged. Refrigeration and air conditioning sector in 2009 due to the use of refrigerant greenhouse gas emissions ($CO_2eq.$) assessment results, portable air conditioner 1,974,646 ton to year, fixed-mount air conditioner 1,011,754 ton to year, household refrigeration unit 4,396 ton to year, commercial refrigeration equipment 1,263 ton to year was estimated to total 2,992,037 tons.

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF

The Concentration of Economic Power in Korea (경제력집중(經濟力集中) : 기본시각(基本視角)과 정책방향(政策方向))

  • Lee, Kyu-uck
    • KDI Journal of Economic Policy
    • /
    • v.12 no.1
    • /
    • pp.31-68
    • /
    • 1990
  • The concentration of economic power takes the form of one or a few firms controlling a substantial portion of the economic resources and means in a certain economic area. At the same time, to the extent that these firms are owned by a few individuals, resource allocation can be manipulated by them rather than by the impersonal market mechanism. This will impair allocative efficiency, run counter to a decentralized market system and hamper the equitable distribution of wealth. Viewed from the historical evolution of Western capitalism in general, the concentration of economic power is a paradox in that it is a product of the free market system itself. The economic principle of natural discrimination works so that a few big firms preempt scarce resources and market opportunities. Prominent historical examples include trusts in America, Konzern in Germany and Zaibatsu in Japan in the early twentieth century. In other words, the concentration of economic power is the outcome as well as the antithesis of free competition. As long as judgment of the economic system at large depends upon the value systems of individuals, therefore, the issue of how to evaluate the concentration of economic power will inevitably be tinged with ideology. We have witnessed several different approaches to this problem such as communism, fascism and revised capitalism, and the last one seems to be the only surviving alternative. The concentration of economic power in Korea can be summarily represented by the "jaebol," namely, the conglomerate business group, the majority of whose member firms are monopolistic or oligopolistic in their respective markets and are owned by particular individuals. The jaebol has many dimensions in its size, but to sketch its magnitude, the share of the jaebol in the manufacturing sector reached 37.3% in shipment and 17.6% in employment as of 1989. The concentration of economic power can be ascribed to a number of causes. In the early stages of economic development, when the market system is immature, entrepreneurship must fill the gap inherent in the market in addition to performing its customary managerial function. Entrepreneurship of this sort is a scarce resource and becomes even more valuable as the target rate of economic growth gets higher. Entrepreneurship can neither be readily obtained in the market nor exhausted despite repeated use. Because of these peculiarities, economic power is bound to be concentrated in the hands of a few entrepreneurs and their business groups. It goes without saying, however, that the issue of whether the full exercise of money-making entrepreneurship is compatible with social mores is a different matter entirely. The rapidity of the concentration of economic power can also be traced to the diversification of business groups. The transplantation of advanced technology oriented toward mass production tends to saturate the small domestic market quite early and allows a firm to expand into new markets by making use of excess capacity and of monopoly profits. One of the reasons why the jaebol issue has become so acute in Korea lies in the nature of the government-business relationship. The Korean government has set economic development as its foremost national goal and, since then, has intervened profoundly in the private sector. Since most strategic industries promoted by the government required a huge capacity in technology, capital and manpower, big firms were favored over smaller firms, and the benefits of industrial policy naturally accrued to large business groups. The concentration of economic power which occured along the way was, therefore, not necessarily a product of the market system. At the same time, the concentration of ownership in business groups has been left largely intact as they have customarily met capital requirements by means of debt. The real advantage enjoyed by large business groups lies in synergy due to multiplant and multiproduct production. Even these effects, however, cannot always be considered socially optimal, as they offer disadvantages to other independent firms-for example, by foreclosing their markets. Moreover their fictitious or artificial advantages only aggravate the popular perception that most business groups have accumulated their wealth at the expense of the general public and under the behest of the government. Since Korea stands now at the threshold of establishing a full-fledged market economy along with political democracy, the phenomenon called the concentration of economic power must be correctly understood and the roles of business groups must be accordingly redefined. In doing so, we would do better to take a closer look at Japan which has experienced a demise of family-controlled Zaibatsu and a success with business groups(Kigyoshudan) whose ownership is dispersed among many firms and ultimately among the general public. The Japanese case cannot be an ideal model, but at least it gives us a good point of departure in that the issue of ownership is at the heart of the matter. In setting the basic direction of public policy aimed at controlling the concentration of economic power, one must harmonize efficiency and equity. Firm size in itself is not a problem, if it is dictated by efficiency considerations and if the firm behaves competitively in the market. As long as entrepreneurship is required for continuous economic growth and there is a discrepancy in entrepreneurial capacity among individuals, a concentration of economic power is bound to take place to some degree. Hence, the most effective way of reducing the inefficiency of business groups may be to impose competitive pressure on their activities. Concurrently, unless the concentration of ownership in business groups is scaled down, the seed of social discontent will still remain. Nevertheless, the dispersion of ownership requires a number of preconditions and, consequently, we must make consistent, long-term efforts on many fronts. We can suggest a long list of policy measures specifically designed to control the concentration of economic power. Whatever the policy may be, however, its intended effects will not be fully realized unless business groups abide by the moral code expected of socially responsible entrepreneurs. This is especially true, since the root of the problem of the excessive concentration of economic power lies outside the issue of efficiency, in problems concerning distribution, equity, and social justice.

  • PDF