• Title/Summary/Keyword: Growth parameters

Search Result 2,540, Processing Time 0.034 seconds

Variation in Physiological Energetics of the Ark Shell Scapharca broughtonii (Bivalvia: Arcidae) from Gamak Bay, South Coast of Korea

  • Shin, Yun-Kyung;Choi, Yoon-Seok;Kim, Eung-Oh;Sohn, Sang-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-338
    • /
    • 2009
  • This study presents physiological rates of respiration and excretion, clearance rate, and assimilation efficiency of the ark shell Scapharca broughtonii, determined during 2007 from specimens collected in Gamak Bay on the south coast of Korea. Physiological parameters were measured monthly under static, laboratory controlled conditions with ambient conditions, and measurements were performed seasonally in order to estimate scope for growth and its probable sources of variation. Temperature directly influenced respiration and excretion. Clearance rates showed a tendency to be low during May-August, which is a period of gametogenesis. Assimilation efficiency was not significantly different seasonally and was independent of the concentration of chlorophyll a. The scope for growth was negative during high-temperature months (July-August), reflecting the high temperature and low clearance rate, and had its highest positive values during spring and autumn. The energy budget or growth potential of bivalves has been applied to other economically important species. Data on the physiological parameters and scope for growth of S. broughtonii obtained in this study will be used to assess the carrying capacity for ark shell cultivation.

Alterations of growth performance, hematological parameters, and plasma constituents in the sablefish, Anoplopoma fimbria depending on ammonia concentrations

  • Kim, un-Hwan;Park, Hee-Ju;Hwang, In-Ki;Han, Jae-Min;Kim, Do-Hyung;Oh, Chul Woong;Lee, Jung Sick;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.4.1-4.6
    • /
    • 2017
  • Juvenile Anoplopoma fimbria (mean length $16.8{\pm}2.2cm$, and mean weight $72.8{\pm}5.4g$) were exposed for 2 months with different levels of ammonia (0, 0.25, 0.50, 0.75, 1.00, and 1.25 mg/L). Growth performances such as daily length gain, daily weight gain, condition factor, and hepatosomatic index were significantly decreased by ammonia exposure. Hematological parameters such as red blood cell (RBC) count, hematocrit, and hemoglobin were also significantly decreased. In plasma inorganic components, calcium and magnesium were significantly decreased by ammonia exposure. In plasma organic components, there was no alteration in cholesterol and total protein. In enzyme plasma components, glutamic oxalate transaminase (GOT) and glutamic pyruvate transaminase (GPT) were significantly increased. The results of this study indicated that ammonia exposure can induce significant growth reduction and blood biochemistry alterations of A. fimbria.

Study of Euglenophytes Bloom and it's Impact on Fish Growth in Bangladesh

  • Rahman, M.M.;Jewel, M.A.S.;Khan, S.;Haque, M.M.
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.185-192
    • /
    • 2007
  • A study was carried out in nine fertilized fish ponds under three treatments (T-I, T-II and T-III) at Bangladesh Agricultural University, Mymensingh to see the bloom of euglenophytes with the intention of observing its impact on the growth of fish in culture condition. Some water quality parameters viz., temperature, dissolved oxygen, pH, PO4-P and NO3-N concentration and some biological parameters viz., phytoplankton population and growth of fish were monitored at fixed intervals. Euglenophytes showed a heavy bloom in late August in the ponds of T-II. The bloom was occurred by the genera, Euglena, Phacus and Trachelomonas of which Euglena was the most dominant genus. In relation of water quality parameters with euglenophytes bloom, it was hypothesized that euglenophytes prefers higher temperature and acidic environment with higher nutrient concentrations. Acidic environment and nutrient enrichment enhanced the bloom of euglenophytes which hampered the growth of other beneficial algal groups (chlorophytes and bacillariophytes) and fish. Due to heavy bloom, the fishes breathed with difficulty at the surface. The fishes in the heavy bloom ponds presented the weight values were lower than verified for those in the ponds where the bloom did not occur. Total production (calculated) of fish in different treatments ranged from 1355.89 to1760.63 kg ha–1 with significantly (p < 0.05) lowest in the ponds of T-II.

Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions

  • Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Determining the optimal range of vitamin C for early red drum (Sciaenops ocellatus) juveniles

  • Nguyen Thi Thuy;Khuong V. Dinh;Ngo Van Manh;Trung Si Trang
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.525-534
    • /
    • 2023
  • Vitamin C plays an important role for fish survival, growth and disease resistance. However, the optimal vitamin C for rearing red drum Sciaenops ocellatus juveniles in Vietnam is not known. To address this issue, a 70-day feeding trial was conducted to evaluate the optimal dietary vitamin C requirements for red drum juveniles. Seven isonitrogenous (55.35% protein) and isolipidic (9.07% lipid) diets were formulated to include graded vitamin C concentrations of 23.2, 124.5, 235.2, 423.8, 626.7, 824.6, and 1,027.3 mg/kg, respectively. The results showed that fish fed on 423.8 mg/kg vitamin C diet had the highest growth rate, which can be linked to the increased feed utilization. Broken-line analysis indicated that the optimal dietary vitamin C requirements of red drum juveniles were 342.92 and 405.80 mg/kg for growth parameters, feed utilization, body composition and biochemical parameters of serum. Based on these parameters the optimal vitamin C supplementation level for red drum juveniles was estimated in the range of 342.92-405.80 mg/kg vitamin C in the diets with direct applications in producing artificial feed for rearing juveniles of this species in Vietnam.

Association of Angiotensin Converting Enzyme I/D and ${\alpha}$-actinin-3 R577X Genotypes with Growth Factors and Physical Fitness in Korean Children

  • Kim, Kijin;Ahn, Nayoung;Cheun, Wookwang;Hong, Changbae;Byun, Jayoung;Joo, Youngsik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.131-139
    • /
    • 2015
  • This study analyzed the differences in aerobic and anaerobic exercise ability and growth-related indicators, depending on the polymorphism of the ACE and the ACTN3 genes, to understand the genetic influence of exercise ability in the growth process of children. The subjects of the study consisted of elementary school students (n=856, age $10.32{\pm}0.07yr$). The anthropometric parameters, physical fitness and growth factors were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. There were no significant differences between the anthropometric parameters, physical fitness and growth factors for the ACE gene ID or the ACTN3 gene R577X polymorphism. However, the DD type of ACE gene was highest in the side step test (p<0.05), and the DD type was significantly higher than the II+ID type (p<0.05) in the early bone age. The combined group of the ACE gene II+ID and the ACTN3 gene XX type significantly showed lower early bone age (p< 0.05). This study did not find any individual or compounding effects of the polymorphism in the ACE I/D or the ACTN3 R577X polymorphisms on the anthropometric parameters, physical fitness and growth factors of Korean children. However, the exercise experience and the DD type of the ACE gene may affect the early maturity of the bones.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy (Mg-Al-Zn 합금의 Paris-Erdogan 법칙에 따른 피로거동 파라미터의 확률론적 특성)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • The primary aim of this study is to investigate the probabilistic characteristics of the fatigue parameters that describe the fatigue crack growth behavior in magnesium alloy. Statistical fatigue crack propagation experiments have been performed on rolled AZ31 magnesium alloy CT specimens with different specimen thickness, load ratio, and maximum load at ambient temperature in a laboratory. Using the statistical fatigue data obtained from these experiments, the goodness-of-fit of the probability distribution of the fatigue behavior parameters is evaluated in this study by performing statistical analyses. The crack growth rate coefficient is a fatigue parameter having a very large COV(Coefficient of Variation), but the variation of a crack growth rate exponent is not substantial. It is considered that a crack growth rate exponent can be a material constant. It is also found that the best fit probability distribution of the parameters such as the crack growth rate coefficient and crack growth rate exponent for a magnesium alloy is a three-parameter Weibull distribution, and two-parameter Weibull distribution is a good distribution only for the crack growth rate coefficient.