• 제목/요약/키워드: Growth of Solid

Search Result 1,448, Processing Time 0.023 seconds

Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst (탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성)

  • Jung, Il-Hyun;Chae, Myung-Sic;Lee, Ui-Am
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

A Study on the Fabrication of 3D Scaffolds Using the Solid Freeform Method (임의 형상 제작 기법을 이용한 3차원 세포지지체 제작에 관한 연구)

  • Choi, Do-Hyun;Kim, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.44-51
    • /
    • 2019
  • With the goal of tissue regeneration for organs damaged through an accident or a disease, research on tissue engineering has been conducted to produce 3-D scaffolds that can support the cells in the attachment and growth for the cell proliferation and differentiation. A scaffold requires a suitable pore size and porosity to increase the nutrient circulation or oxygen supply for the attachment and growth of cells. The existing production methods such as solvent-casting particulate leaching, phase separation, and fiber bonding have certain disadvantages. With these methods, it is difficult to obtain a free desired shape. In addition, certain pore sizes and interconnectivities among the pores may not be guaranteed. To solve these problems, this study has fabricated a scaffold with a 3-D shaped nose using Alginate, which is a natural polymer obtained through Fused Deposition Modeling (FDM), one of the CAD/CAM-based Solid Freeform Fabrication (SFF) methods.

Effect of Abnormal Grain Growth on Ionic Conductivity in LATP (LATP 내 비정상 입자성장이 이온 전도도에 미치는 영향)

  • Hyungik Choi;Yoonsoo Han
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950℃ for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900℃ for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.

Effects of Spices on the Growth of Lactic Acid Bacteria (향신료(香辛料)가 유산균(乳酸菌)의 증식(增殖)에 미치는 영향(影響))

  • Yoo, Jin-Young;Min, Byong-Yong;Suh, Kee-Bong;Hah, Duk-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.124-135
    • /
    • 1978
  • This study was undertaken in order to examine the effect of ginger, gerlic and red pepper, usually used as the ingredients of Kimchi, on the growth and acid production of Lact. plantarum ATCC 8014 and Lact. fermenti ATCC 9338 during incubation in the medium containing different amount of each extract. The results obtained are as follows: 1. The effects of ginger extract a. The growth of Lact. plantarum ATCC 8014 and Lact. fermenti ATCC 9338 tended to be stimulated as the amount of extract added into the medium increased in a certain amount (3.64mg soluble solid/ml). b. The pH of the culture medium of Lact. plantarum ATCC 8014 became lower to some degree and acid production tended to be stimulated but acid production of Lact. fermenti ATCC 9338 tended to be suppressed as the amount of extract added in a certain amount (3.64mg soluble solid/ml) increased. 2. The effect of garlic extract a. The growth of Lact. plantarum ATCC 8014 and Lact. fermenti ATCC 9338 tended to be stim ulated as the amount of extract added in a certain amount (31.7 mg soluble solid/ml) increased. b. The acid production of Lact plantarum ATCC 8014 was suppressed (p<0.01) and drop in pH was suppressed (p<0.05) as the amount of extract added in a certain amount increased. In case of Lact. fermenti ATCC 9338, the acid production t ended to be suppressed also. 3. The effects of red pepper extract a. The growth of Lact. plantarum ATCC 8014 and Lact. fermenti ATCC 9338 tended to be stimulated as the amount of extract added in a certain amount (14.5 mg soluble solid/ml) increased.

  • PDF

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Cultivation of Nostoc flagelliforme on Solid Medium

  • Su Jianyu;Jia Shiru;Qiao Changsheng;Kim Jung-Gyu;Hong Wan-Hae;Cho Ki-An;Choi DuBok
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.135-140
    • /
    • 2005
  • In order to construct an artificial cultivation of Nostoc flagelliforme on solid medium, we attempted to assess the viability of approaches, which utilized either BG-11 agar or sand medium using both sterile and non-sterile algal segments. In the trial in which the BG -11 agar medium was inoculated with the non-sterile algal segments, the algae exhibited the rapid growth in the initial 4 days of cultivation. However, after 4 days of cultivation, the growth rate of the algae slowed, and the algal growth was completely stopped by 7 days of cultivation. When the BG -11 medium was inoculated with the sterile algal segments, the algae exhibited the rapid growth for a longer period of 8 days, reaching a length of 24.9 mm. The growth rate during this period was measured to be $24.5\%$. After the 8 days of cultivation, the algal growth rate began to slow and had almost stopped by the 13 days of cultivation. On the other hand, when the sterile algal segments were inoculated onto a sand plate, the algal segments decomposed, reaching total decomposition after 11 days of cultivation. By way of contrast, the desiccation treatment samples continued to grow for 14 days of cultivation. After 14 days of cultivation, the algae achieved a length of 26.1 mm, with a growth rate of $30.6\%$. Our results indicate that periodic desiccation may constitute an effective strategy for the prevention of algal decomposition.

Evaluation of Growth and Wood Traits in E. camaldulensis and Interspecific Eucalypt Hybrid Clones Raised at Three Diverse Sites in Southern India

  • Rathinam Kamalakannan;Suraj Poreyana Ganapathy;Shri Ram Shukla;Mohan Varghese;Chandramana Easwaran Namboothiri Jayasree
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Twenty-five Eucalyptus clones (14 E. camaldulensis - EC and 11 interspecific eucalypt hybrid clones - EH) grown in three contrasting sites were evaluated for the growth and few wood traits at 4 years of age. The stability, genotype-site interaction and suitability of these clones for pulp and solid wood industry sectors were studied. Growth of eucalypt clones was significantly higher at site 1 with higher rainfall, but wood density did not differ significantly from lower rainfall sites. Kraft pulp yield (KPY) decreased from sites 1 to 3 based on moisture availability, but not between two groups of clones. Volumetric shrinkage (VS) was significantly higher in EC clones at site 3 with lowest rainfall, but there was no specific trend at other two sites with maximum (site 1) and intermediate (site 2) rainfall. The mechanical traits modulus of rupture (MOR) and modulus of elasticity (MOE) were at par in sites 1 and 2, but significantly lower at the driest site 3. The growth rate had a significant positive correlation with KPY, MOR and MOE and a negative correlation with VS, but no significant impact on wood density in both groups of clones. Genotype×environment interaction (G×E) was evident in most traits due to the difference in response of clones to moisture availability. Since wood density was negatively correlated to KPY, it has to be kept at an optimum level for the profitability of pulp industry. There was no significant difference between EC and EH clones for most traits except VS at site 3. Stability of clones varied across sites in different traits, and hence clones may be selected for deployment at each site by screening for growth, followed by wood density, considering the relationship of growth and density with other traits required by pulp and solid wood industry sectors.

The Introduction of Polycrylamide Gel into the Solid Culture of Streptomyces spp

  • Han, Hong-Ui;Yang, Moon
    • Korean Journal of Microbiology
    • /
    • v.30 no.1
    • /
    • pp.65-69
    • /
    • 1992
  • It is proposed the polyacrylamide gel, instead of agar, could be used for the solid cultures of microorganisms including Streptomyces strains. Polymerization and gellation of 5% acrylamide solution were done by autoclaving for 5 min at 121.deg.C and no hindered by the addition of nutrient-rich media. In particular, pH buffer solution suitable for corresponding microorganisms must be used in the preparation of culture media. Comparing with agar, it was discussed that polycrylamide gel had many advantages such as gellation within the wide range of strong acid Carbon and Nitrogen sources, requirement tests of growth factors and minerals, sterization at high temperature, diffusion assays of products depending on the pore size of gel, and stability and standarization of microbial cultures.

  • PDF

Microstructures and Mechanical Properties of Al-Cu Eutectic Composite by Upward Continuous Casting (상향식 연속주조법으로 제조한 Al-Cu 공정 복합재료의 응고조직 및 기계적 성질)

  • Kwon, Kee-Kyun;Sunwoo, Kuk-Hyun;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1990
  • Continuous casting of the $Al-CuAl_2$ eutectic composite was carried out by the upward continuous casting process. The morphology of the eutectic growth and the stability of solid-liquid interface were investigated under various growth conditions. It was possible to get the planar solid-liquid interface at the condition of $G_L/R$$3.6{\times}10^3^{\circ}Csec/mm^2$. And the colony structures were formed at the conditions of $G_L/R$ < $R=0.33{\times}10^3^{\circ}Csec/mm^2$. The inter-lamellar spacing of $Al-CuAl_2$ eutectic composite was decreased with the increase of pulling speed. The reduction of inter-lamellar spacing & value of $G_L/R$ caused the increase of ultimate tensile strength and Rockwell hardness in $Al-CuAl_2$ eutectic composite.

  • PDF