• Title/Summary/Keyword: Growth inhibition

Search Result 3,751, Processing Time 0.028 seconds

Development of Integrated Pest Management Techniques Using Biomass for Organic Farming (I) (유기농업에서 무공해 생물자원을 이용한 병충해 종합방제 기술개발 (I) 키토산의 항균 및 병저항성관련 유전자 유도에 의한 토마토 역병 및 시들음병 억제효과)

  • 오상근;최도일;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.278-285
    • /
    • 1998
  • Effects of chitosan on growth of tomato plant, and suppression of Fusaruim wilt caused by Fusarium oxysporum f. sp. lycopersici and late blight casued by Phytophthora infestans, were examined. Both late blight and fusarium wilt were suppressed by spray and irrigation of chitosan, respectively. Inhibition of mycelial growth was not greatly affected by molecular size of chitosan but, concentration dependent effects was observed. Ninty percent of P. infestans and 80% of F. oxysporum f. sp. lycopersici of mycelial growth was inhibited by 1,000 ppm of chitosan (MW 30,000~50,000) when amended in plate media. Induction of defense-related gene expression in plant by chitosan treatments were observed when chitosan treated tobacco and tomato RNA samples were hybridized with several defense-related genes as probes. The results revealed that $\beta$-1,3-glucanase and chitinase genes were strongly induced, while pathogenesis-related protein-1, 3-hydroxy-3-methylglutaryl coenzyme A reductase, anionic peroxidase, phenylalanine ammonia lyase genes were weakly induced by chitosan treatment. These results suggest that chitosan have dual effects on these host-pathogen interactions. Possible roles of chitosan in suppression of tomato diseases by inhibition of mycelial growth and activation of plant defense responses are discussed.

  • PDF

Effect of Inhibitors on cell growth and urease activity of Vibrio parahaemolyticus (저해제가 Vibrio parahzemolyticius 균주의 생육 및 요소분해효소의 활성에 미치는 영향)

  • 김종숙;김영희
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.558-563
    • /
    • 2000
  • Effect of inhibitors on Vibrio parahaemolyticus cell growth and its urease activity was studied. The growth of the bacterium and the enzyme activity were inhibited by the addition of 0.02% p-hydroxymercuric benzoate, $HgCl_2$and $AgNO_3$. However, same concentration of boric acid, thallium acetate and $Pb(NO_3)_2$ did not affect the cell growth but inhibited urease activity by 25%, 29%, and 38%, respectively. Acetohydroxamic acid was the most potent inhibitor on cell growth by inhibiting 40% but did not affect urease activity. To investigate the effect of inhibitors on urease activity, urease was purified and confirmed on SDS-PAGE. The purified urease was inhibited 100% by the addition of 1 mM acetohydroxamic acid and $AgNO_3$but no inhibition was occurred by the addition of the same concentration of thallium acetate. and the addition of 0.01 mM of $HgCl_2$ and acetohydroxamic acid inhibited the purified urease activity by 39% and 24%, respectively. On 0.1 millimolar basic, acetohydroxamic acid and $HgCl_2$inhibited 4 times more active in urease inhibition than p-hydroxymercuric benzoate whereas no inhibition was occurred either thallium acetate or $Pb(NO_3)_2$.

  • PDF

Doenjang Extract Has Anticancer Activity and Induces Apoptosis in AGS Human Gastric Adenocarcinoma

  • Hwang, Kyung-Mi;Lee, Jeong-Min;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 2005
  • The anticancer and apoptotic effect of chloroform extract from 24 month-fermented doenjang were investigated in AGS human gastric adenocarcinoma cells. The chloroform extract of 24 month-fermented doenjang inhibited the AGS gastric cancer cell growth in a dose-dependent manner. It has been confirmed by observing the cell distribution under inverted microscope. Approximately, 48 hour treatment of $100\;{\mu}g/mL$ doenjang extract inhibited AGS cancer cell growth by $76.7\%$, respectively. The growth inhibition may be caused by apoptosis of AGS cancer cells after 48 hour treatment of 24 month-fermented doenjang extract. It has been demonstrated by cell cycle arrest that revealed the shift from $G_2+M\;to\;G_0+G_1$ phase and the formation of apoptotic bodies. The fermentation period playa critical role in cell cycle arrest, in which 24 month-fermented doenjang extract was more effective than 12 month-fermented doenjang extract. The treatment of 24 month-fermented doenjang extract for 48 hours has induced intercellular Bax and decreased Bcl-2 level, indicating that it may regulate the expression level of Bax/Bcl-2 proteins. Thus, 24 month-fermented doenjang extract seems to have anticancer effect via cancer cell growth inhibition induced by apoptosis process.

Evaluation of Growth Inhibition for Microcystis aeruginosa with Ultrasonic Irradiation Time (초음파 조사시간에 따른 Microcystis aeruginosa의 성장억제 평가)

  • Kang, Eun Byeol;Joo, Jin Chul;Jang, So Ye;Go, Hyeon Woo;Park, Jung Su;Jeong, Moo Il;Lee, Dong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.183-193
    • /
    • 2022
  • The growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was evaluated using a large algae sample volume (10 L) for various ultrasonic irradiation times (0.5, 1, 1.5, 2, 2.5 and 3 hr) at a laboratory scale. Based on the analysis of Chl-a and cell number of M. aerginosa, algae growth inhibition was observed with the decrease in Chl-a and cell number in all experimental groups after the ultrasonic irradiation. For the experimental group (T_B, T_C, T_D) with an ultrasonic irradiation time of less than 2 hours, rapid regrowth of algae was observed after growth inhibition, but the experimental group (T_E, T_F, T_G) with an irradiation time of more than 2 hours successfully inhibited algal growth lasting one or two more days. Based on the comparison of the recovery time to initial cell number the experimental group (T_B, T_C, T_D) took less than 20 days whereas the experimental group (T_E, T_F, T_G) took about 30 days. Correspondingly, the experimental group showed a high first order decay rate (𝜅) in proportion to the ultrasonic irradiation time during the growth inhibition period. Additionally, the specific growth rates (𝜇) during regrowth in the experimental group with irradiation time of more than 2 hours were relatively low compared to those in the experimental group with less than 2 hours. Therefore, ultrasonic irradiation for more than 2 hours is required for long-term (30 days) inhibition of algal growth in stagnant waters. However, the appropriate ultrasonic irradiation time for algae growth inhibition should be determined according to various field conditions such as the volume of stagnant water, water depth, flow rate, algae concentration, etc. Finally, damages to the algal cell surface and cell membrane were clearly observed, and both destruction and disturbance of gas vesicles of M. aeruginosa in the experimental group were discovered, indicating the growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was confirmed.

Identification and Growth Inhibition of Phytotoxic Substances from Artemisia scoparia (바쑥의 독성물질 확인과 생장억제작용)

  • Kil, Bong-Seop;Hyeon-Gyeong Yoo
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.295-304
    • /
    • 1996
  • KDICical substances from Artemisia scoparia were analyzed by gas chromatography. Seven phenolic compounds and thirty nine terpenoids were identified. Most abundant within each group were cinnamic acid and camphor, respectively. The KDICicals were prepared as aqueous extracts and then used for germination, growth, and chlorophyll content tests. The extracts were inhibitory to germination and seedling growth of the receptor lants. This inhibitory effect was dependent on concentration. When the effect of the aqueous extract on chlorophyll content was assayed, both chlorophylls a and b were shown to be reduced. The reduction in seedling elongation and growth in dry weight paralleled the reduction in chlorophyll concentration. These KDICical substances, including phenolic compounds and terpenoids, from Artemisia scoparia were responsible for the growth inhibition of the selected species.

  • PDF

Interference of In Vitro and In Vivo Growth of Several Intestinal Bacteria by Lactococcus Strains

  • Kimoto-Nira, Hiromi;Ohmomo, Sadahiro;Nomura, Masaru;Kobayashi, Miho;Mizumahi, Koko;Okamoto, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1286-1289
    • /
    • 2008
  • The ability of Lactococcus strains to inhibit the growth of intestinal bacteria was examined. In in vitro cocultures, we observed that among eighteen Lactococcus strains tested, the ability to inhibit growth of Escherichia coli varied, with the L. lactis N7 showing the greatest growth inhibition. Strain N7 ($8.94\times10^{10}$ CFU/day for 7 days) was orally administered to mice, and the viable count of strain N7 in feces appeared at a level of $10^{4-5}$ CFU/g. After administration, the proportion of Bacteroidaceae to total intestinal bacteria decreased. Lactococci may act as probiotic bacteria by inhibiting the growth of harmful bacteria.

Antimicrobial Activity of Water Soluble Propolis (수용성 프로폴리스의 항균성)

  • Park, Heon-Kuk;Kim, Sang-Bum;Shim, Chang-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • In this study, the minimum inhibition concentration(MIC), growth inhibition activity, and colony forming inhibitory activity of water soluble propolis against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae and Salmonella enteritidis were tested. The MICs of the water soluble propolis against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, and Salmonella enteritidis were 312.5 ppm, below 156.3 ppm, 625 ppm, 10,000 ppm, above 10,000 ppm, 10,000 ppm, above 10,000 ppm, above 10,000 ppm, 10,000 ppm, and above 10,000 ppm, respectively. The growth inhibition concentrations against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, and Klebsiella pneumoniae were 156.3 ppm, below 156.3 ppm, 625 ppm, 5,000 ppm, 10,000 ppm, 10,000 ppm, 10,000 ppm, 10,000 ppm, and 5,000 ppm, respectively. However, 10,000 ppm did not inhibit the growth of Salmonella enteritidis. Finally, the colony forming inhibitory activities against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, and Salmonella enteritidis were 98.0%, 99.8%, 69.8%, 98.1%, 62.0%, 63.1%, 79.5%, 61.9%, 79.6%, and 0.0%, respectively.

In Vitro Inhibitory Activity of Cow Urine and Dung to Fusarium solani f. sp. cucurbitae

  • Basak, A.B.;Lee, Min-Woong;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.51-54
    • /
    • 2002
  • This paper deals with the study on comparative efficacy and in vitro activity of cow urine and cow dung for controlling root rot disease of cucumber caused by Fusarium solani f. sp. cucurbitae Snyder & Hansen following slide germination and mycelial growth inhibition tests. Results showed that both germination of conidia and the percentage inhibition of mycelial growth decreased or suppressed and varied greatly with respect to different hour and days of incubation and kind of bio-matters. In between two bio-matters cow urine was found more effective than that of cow dung in conidial germination. No germination of conidia was recorded after one hour of incubation in any medium whereas in cow urine germination of conidia was not also observed even after 2 hours of incubation. After 7 hours of incubation out of 200 conidia of F. solani f. sp. cucurbitae, 28 in cow urine and 64 in cow dung were germinated while in control a total germinated conidia was 185. In case of percentage inhibition of conidial germination the highest percentage(100%) was recorded in cow urine after 2 hours of incubation followed by 3 hours(96.0%), 4 hours(91.0%) and 6 hours(89.4%). During the test on inhibition of mycelial growth, the highest percentage(62.8%) was recorded in cow urine potato dextrose agar(CUPDA) medium tested after 4 days of incubation, followed by 3 days(60.5%), 5 days(56.5%) and 2 days(55.0%). In this test cow dung potato dextrose agar(CDPDA) had less efficacy in suppression of the percentage inhibition of mycelial growth.

Antifungal Activity of Lichen-forming Fungi against Colletotrichum acutatum on Hot Pepper

  • Wei, Xinli;Jeon, Hae-Sook;Han, Keon-Seon;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.202-206
    • /
    • 2008
  • Antifungal activity of Korean and Chinese lichen-forming fungi (LFF) was evaluated against plant pathogenic fungus of Colletotrichum acutatum, causal agent of anthracnose on hot pepper. This is the first attempt to evaluate antifungal activity of LFF, instead of lichen thalli, against C. acutatum. Total 100 LFF were isolated from the lichens with discharged spore method or tissue culture method. Among the 100 isolates, 8 LFF showed more than 50% of inhibition rates of mycelial growth of the target pathogen. Especially, Lecanora argentata was highly effective in inhibition of mycelial growth of C. accutatum at the rate of 68%. Antifungal activity of other LFF was in the order of Cetrelia japonica (61.4%), Ramalina conduplicans (59.5%), Umbilicaria esculenta (59.5%), Ramalina litoralis (56.7%), Cetrelia braunsiana (56.5%), Nephromopsis pallescensn (56.1%), and Parmelia simplicior (53.8%). Among the tested LFF, 61 isolates of LFF exhibited moderate antifungal activity against the target pathogen at the inhibition rates from 30 to 50%. Antifungal activity of the LFF against C. acutatum was variable at the species level rather than genus level of LFF. This study suggests that LFF can be served as a promising bioresource to develop novel biofungicides.

Antimicrobial test of Antagonistic Microbes for Biological Control of Large patch of Zoysiagrass (잔디 Large patch의 생물학적 방제를 위한 길항 미생물의 선발과 항균력 검정)

  • Ma, Gi-Yoon;Lee, Geung-Joo
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.35-35
    • /
    • 2011
  • A large patch disease caused by Rhizoctonia solani AG2-2(IV) is a serious problem in turfgrass sites including golf courses and sports fields in Korea. The objectives of this study were to isolate some antagonistic microorganisms and to explain some involving mechanisms. Initially single colonies which were formed from the filtrates of various soil samples were obtained from LB culture and then co-cultured with R.solani AG2-2(IV) on PDA plate to explore some antagonistic microbes against for large patch fungus, Rhizoctonia solani AG2-2(IV). Out of total 82 antagonistic isolates which commonly had inhibition effect on Rhizoctonia solani AG2-2(IV) mycelial growth, one candidate (YPIN22) showed the most antifungal effect, which was confirmed by the longest distance from the edge of bacterial colony to the mycelial edge of the Rhizoctonia solani AG2-2(IV) in the dual culture. A succeeding investigation was to test any potential effect of the isolate on growth inhibition of 5 other turfgrass pathogens including R. solani solani AG2-2(IIIB), P. ultimum, C. caudatum, C. lunata, and F.oxysporum. Preliminary result indicated that the new isolate YPIN22 was also found to have antagonistic potential on the growth inhibition of those turfgrass pathogenic fungi, which was explained by inhibition zones ranging from 8 to 22mm. A further explanation of some characteristics of the isolate YPIN22 will be discussed in detail.

  • PDF