• 제목/요약/키워드: Growth hormone gene

검색결과 194건 처리시간 0.033초

A Rapid and Simple Method for Construction and Expression of a Synthetic Human Growth Hormone Gene in Escherichia coli

  • Roytrakul, Sittiruk;Eurwilaichitr, Lily;Suprasongsin, Chittiwat;Panyim, Sakol
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.502-508
    • /
    • 2001
  • A cDNA, encoding the human growth hormone (hGH), was synthesized based on the known 191 amino acid sequence. Its codon usage was optimized for a high level expression in Escherichia coli. Unique restriction sites were incorporated throughout the gene to facilitate mutagenesis in further studies. To minimize an initiation translation problem, a 624-bp cassette that contained a ribosome binding site and a start codon were fused to the hGH-coding sequence that was flanked between the EcoRI and HindIII sites. The whole fragment was synthesized by an overlapped extension of eight long synthetic oligonucleotides. The four-short duplexes of DNA, which were first formed by annealing and filling-in with a Klenow fragment, were assembled to form a complete hGH gene. The hGH was cloned and expressed successfully using a pET17b plasmid that contained the T7 promoter. Recombinant hGH yielded as much as 20% of the total cellular proteins. However, the majority of the protein was in the form of insoluble inclusion bodies. N-terminal amino acid sequencing also showed that the hGH produced in E. coli contained formyl-methionine. This study provides a useful model for synthesis of the gene of interest and production of recombinant proteins in E. coli.

  • PDF

배양 유선세포에서 내생성 호르몬에 의한 유선특이 유전자 프로모터의 활성 조절 (Regulation of the Mammary Tissue-Specific Promoter Activity by Endogenous Hormones in Cultured Mammary Cells)

  • 윤영승;정선미;이성호;김재만
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권2호
    • /
    • pp.221-229
    • /
    • 2000
  • 유선에서 젖의 생산은 뇌하수체 호르몬인 성장 호르몬과 프롤락틴을 포함한 여러 가지 호르몬의 조절을 받는다. 최근의 연구에 따르면 이 호르몬들 중에서 성장호르몬과 프롤락틴은 유선에서도 그 유전자 전사체가 발견된다 본 연구에서는 유선에서 발현되는 성장호르몬이 유선 특이 발현 유전자의 발현에 미치는 영향을 조사하고자 유선 특이 발현 유전자인 베타-락토글로불린($\beta$-lactoglobulin :BLG)의 프로모터를 모델 시스템으로 하여 소와 사람의 성장 호르몬이 유선의 유전자 발현에 끼치는 영향을 조사하였다. 성장 호르몬은 단독으로 처리하였을 패 베타-락토글로불린 유전자 프로모터 활성을 억제하였다. 그러나 젖 분비 호르몬들인 인슐린, 프롤락틴, 글루코코르티코이드와 함께 처리하였을 때는 농도 의존적으로 BLG 프로모터 활성을 상승시키는 효과를 보였다. 성장 호르몬을 유선 세포내에서 발현시켰을때는 적정농도에서 세포 증식과 유선 프로모터 활성을 크게 증진시켰다. 반면 소의 성장 호르몬 유전자 프로모터는 유선 세포에서 뚜렷한 활성을 나타내지 않았다. 이상의 결과는 유선에서 발현되는 뇌하수체 호르몬들은 조절 누수에 의한 유전자 발현이 아니라 생리적 기능을 가지고 있음을 의미한다. 또 인위적으로 성장호르몬의 발현을 조절하여 적정한 양이 발현되도록 하면 젖의 생산을 증진시킬 수 있다는 가능성도 암시한다.

  • PDF

Growth hormone and receptor gene mutations in Chinese Banna miniature pig

  • Deng, J.Z.;Hao, L.L.;Li, M.T.;Lang, S.;Zeng, Y.Z.;Liu, S.C.;Zhang, Y.L.
    • Animal cells and systems
    • /
    • 제15권4호
    • /
    • pp.310-314
    • /
    • 2011
  • The Banna miniature pig (BNMP) is a representative miniature pig breed in China. Even though BNMP dwarfism is obvious, its underlying causative mutations remain unknown. In this study, the BNMP and Large White pig (LWP) serum growth hormone (GH) and insulin-like growth factor (IGF-1) levels were detected by ELISA and compared. BNMP serum IGF-1 levels were significantly lower than LWP levels (P<0.05). The miniature condition may arise from mutations in the GH and GH receptor (GHR) genes. Therefore, GH and GHR cDNA from the BNMP were cloned into a pMD18-T vector by RT-PCR using the total RNA obtained from the BNMP's pituitary and liver tissues. Sequencing results indicated that the open reading frame of the BNMP GH gene is composed of a 26-residue signal peptide and a 191-residue mature peptide. The coding sequence of the BNMP GHR gene contained 639 amino acids, including a signal peptide that is 18 amino acids long. Two amino acid substitutions, A09V and R22Q, were found in the signal peptide of the GH gene. Additionally, the S104P mutation was found in the BNMP's mature GH protein. Four mutations in the cytoplasmic domain of GHR may influence the downstream signal transduction of GHR, which needs further experimental evidence.

형질전환동물의 유선조직으로부터 인간 성장호르몬의 분비 (Secretion of Human Growth Hormone from Mammary Gland of Transgenic Mice)

  • 구덕본;최강덕;정형민;이상민;이경광;이훈택;정길생
    • 한국가축번식학회지
    • /
    • 제17권4호
    • /
    • pp.375-383
    • /
    • 1994
  • The human growth hormone (hGH) gene uder the control of the rat $\beta$-casein promoter gene was designed to produce transgenic mouse expressed hGH gene in only mammary gland. One hundred seventy two eggs microinjected were transferred to the oviducts of pseudopregnants and 43 offspring were delivered. By Southern blotting hybridization, 3 were transgenic with rat $\beta$-casein/hGH gene. The copy numbers of three transgenic founder were 1, 5, and 15, respectively. A radioimmunoassay was developed to quantitate the amount of expression of the hGH gene in mammary gland of transgenic mice. The amount of hGH was 13.3ng/ml in the lactating milk of one transgenic line, showing predominantly higher than 3.0ng/ml in milk of control mice. Therefore, our findings suggested that $\beta$-casein promoter may induce the tissue specific expression of structural gene.

  • PDF

Gene Expression Related to Cognitive Function in Growth Hormone-treated Mice with Prader-Willi Syndrome

  • Ko, Ah-Ra
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제2권2호
    • /
    • pp.38-40
    • /
    • 2016
  • Prader-Willi syndrome (PWS) is a rare genetic disorder often caused by a deletion of the chromosome 15q11-q13 region inherited from the father or by maternal disomy 15. Growth hormone deficiency with short stature, hypogonadism, cognitive and behavioral problems, analgesia, decreased gastric motility and decreased ability to vomit with hyperphagia are common in PWS leading to severe obesity in early childhood, if not controlled. The goal of this study is to investigate the effects of recombinant human GH (rhGH, henceforth designated GH) on the gene expression related to cognitive function in the brain of PWS mouse model (Snord116del). GH restored the mRNA expression level of several genes in the cerebellum. These data suggest the effect of GH on the expression of cognitive function related genes in cerebellum may provide a mechanism for the GH-induced brain function in PWS patients.

Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

  • Kang, H.J.;Trang, N.H.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1187-1193
    • /
    • 2015
  • This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.

사람 성장호르몬 유전자가 미세주입된 체외수정란 유래의 송아지 생산 (Production of a Normal Calf from Bovine Embryo Microinjected with Human Growth Hormone Gene)

  • 손동수;김선정;김일화;서국현;이광원;상병돈;박무균;이철상;한용만
    • 한국수정란이식학회지
    • /
    • 제9권3호
    • /
    • pp.229-234
    • /
    • 1994
  • This experiment was carried out to develop the model system for mass production of biomedical and nutritional proteins (human proteins) through mamraary gland of the transgenic cattle produced by gene manipulation and embryological technologies. Human growth hormone gene fused with rat $\beta$-casein gene promoter was microinjected into pronuclei of one cell bovine embryos produced by in vitro fertilization. After microinjection, embryos were cultured in vitro for 6 or 7 days. Twenty embryos reaching to blastocysts were transferred to 10 beef recipients, each receiving two embryos. Recipients were diagnosed for pregnancy by rectal palpation at 76 days after embryo transfer. One of them was pregnant to term and produced a female calf weighing 21 kg at 280 days following embryo transfer. DNA was extracted from umbilical cord tissue and blood of calf born for confirming gene insertion. As determined by Southern hybridization, the transgene was not found.

  • PDF

Expression Patterns of Growth Related Genes in Juvenile Red Spotted Grouper (Epinephelus akaara) with Different Growth Performance after Size Grading

  • Mun, Seong Hee;You, Jin Ho;Oh, Hyeon Ji;Lee, Chi Hoon;Baek, Hea Ja;Lee, Young-Don;Kwon, Joon Yeong
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권1호
    • /
    • pp.35-42
    • /
    • 2019
  • Fish shows great difference in growth rate between individuals during larval development and early growth. This difference seriously reduces the production efficiency in fish culture. Growth hormone (GH)/Insulin-like growth factor 1 (IGF1) system is said to play some pivotal roles in fish growth. In this study, we investigated differences of GH, IGF1 and GHR gene expressions in juvenile red spotted grouper (Epinephelus akaara) with different growth performance. Red spotted groupers were reared under the same environmental condition (water temperature $24{\pm}1^{\circ}C$, natural light) for 96 days after hatching. They were divided into 3 groups by size (fast growing, middle growing and slow growing groups: FGG, MGG, and SGG, respectively). RNA was extracted from the brain, liver and muscle tissues from each group, and target gene expression was examined by real-time PCR. In the brain with pituitary gland, expression of GH gene in FGG was significantly higher than the expression in SGG, but the expression of IGF1 and GHR genes in the muscle was highest in SGG. Difference of GHR and IGF1 mRNA in the liver between groups with different growth performance was less clear than that in other tissues, although level of IGF1 mRNA was higher in SGG than in MGG. These results suggest that hormonal governing of growth is not the same in fast growing and slow growing fish, and size grading could cause a shift of hormonal state and growth pattern in this species.

흰쥐 뇌하수체 Gonadotropes와 Somatotropes에서의 Growth Hormone Releasing Hormone 유전자 발현 (Rat Gonadotropes and Somatotropes Express Growth Hormone Releasing Hormone Gene in the Pituitary)

  • 이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.189-196
    • /
    • 1998
  • Growth Hormone Releasing Hormone (GHRH)은 척추동물의 시상하부로부터 합성, 분비되어 시상하부-뇌하수체간의 문맥계를 통해 뇌하수체 전엽에 작용하여 Growth Hormone (GH)의 분비를 촉진한다. 시상하부에서 발현되는 일부 Releasing Hormone 들이 여러 시상하부외 조직에서도 검출되고 조직특이적인 기능을 수행한다는 사실이 여러 연구자들에 의해 밝혀졌다. 이러한 사실들을 배경으로 본 연구자는 GHRH가 흰쥐의 뇌하수체 전엽과 뇌하수체로부터 유래된 종양세포주들에서 발현될 가능성을 조사하였다. GHRH 펩타이드와 mRNA의 존재와 구조를 규명하기 위하여 뇌하수체와 배양 세포를 사용하여 GHRH immunocytochemistry, 방사면역측정법, GHRH PCR과 RNase protection assay를 시행하였다. Immunocytochemistry의 결과 gonadotrope (대형)와 somat-olactotrope (중간형)로 추정되는 세포들에서 GHRH 염색이 나타났고, Somatolactotrope성 종양세포인 GH3 cell 추출물에서 immunoreactive GHRH가 방사면역측정법으로 검출되었다. 3'rapid amplification of cDNA end (3'-RACE)를 시행한 결과, 흰쥐 뇌하수체에 GHRH transcript가 존재하고, 그 3'end 부분이 다른 조직내의 GHRH와 동일함을 확인하였다. GHRH RT-PCR에서도 뇌하수체와 종양세포주들인 $\alpha$T3 cell (gonadotrope성)과 GH3 cell에서 예상 산물들이 증폭되었다. RNase protection assay를 시행한 결과 난소절제에 의해 뇌하수체내 GHRH 유전자 발현이 증가됨을 확인하였다. 이상의 결과는 GHRH가 뇌하수체 전엽의 gonadotrope와 somatotrope에서 발현되고, paracrine 또는 autocrine조절물질로 작용하여 GH 분비 외에도 뇌하수체 전엽 세포들의 분화와 분열등에 관여함을 시사한다.

  • PDF

Growth Hormone Gene Polymorphism and Its Effect on Birth Weight in Cattle and Buffalo

  • Biswas, T.K.;Bhattacharya, T.K.;Narayan, A.D.;Badola, S.;Kumar, Pushpendra;Sharma, Arjava
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권4호
    • /
    • pp.494-497
    • /
    • 2003
  • The study was carried out in Sahiwal, Holstein Friesian, Jersey and crossbred cattle and Murrah, Bhadwari, Jaffarabadi, Nagpuri and Surti buffaloes maintained at different organized herds to work out the polymorphism at growth hormone locus and study its effect on birth weight. A 223 bp fragment of the gene was amplified and digested with Alu I restriction enzyme. Two alleles, L and V with three genotypes LL, LV and VV were observed in Jersey, Holstein and cross bred cattle. Sahiwal cattle and buffalo were monomorphic for this locus producing only one genotype LL and one allele L. The frequency of L allele was comparatively higher in Holstein and crossbred cattle while in Jersey breed, the frequency of this allele was intermediate. The effect of genotype on birth weight was significant and LV genotype had higher birth weight than other genotypes. Hence, LV genotype in Holstein Friesian favored higher birth weight.