• Title/Summary/Keyword: Growth characters

Search Result 648, Processing Time 0.033 seconds

A Study on Direct Sowing Culture of Scutellaria baicalensis GEORGE Cultivated after Barley (황금의 맥후작 직파 재배 연구)

  • 권병선;신종섭
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2001.11b
    • /
    • pp.49-61
    • /
    • 2001
  • This study was carried out to determine the effect of various fertilizer levels, sowing time and planting density on the growth and yield of Scuteliaria baicalensis GEORGE cultivated after the barley in the southern coastal areas of Korea under the non- mulching condition by direct sowing culture. The flowering date of medium dressing plot(N : P$_2$O$\sub$5/ : K$_2$O=9 : 13.5 : 9kg/10a) and heavy dression plot(N : P$_2$O$\sub$5/, : K$_2$O=12 :18 : 12kg/10a) were July 23. The flowering date of the medium and the heavy dressing plot was delayed by 3days compared with that of non-fertilizing plot. The growth characteristics such as stem length, diameter of main stem, number of branch per plant, main root length, main root length, main root thickness and dry weight of stem leaves were more increased at medium dressing plot than that of other fertilizer levels, The root dry weight of in Scutellaria baicalensis GEORGE cultivated after barley was hlghest at the fertilizing plot of N : P$_2$O$\sub$5/ : K$_2$O=9 : 13.5 : 9kg/10a. The dried-root yield was 178kg in medium dressing plot, 167kg in standard dressing pot, and 126kg in non-dressing plot, The dried-root yield of medium dressing plot was 7% and 41 cie higher than that of standard dressing pot and non-dressing control plot, respectively. Emergence and flowering dates in the sowing time of June 1 were earlier than those of the other sowing times. In the sowing time of June 1, length and diameter of main stem, number of node per main stem, number of branch per plant and dry weight of stem leaves were greater than those of sowing times of June 10 and June 20. Yield components such as main stem length and diameter, main stem numbers, branches per plant, dry weight of stem leaves, main root length and thickness, number of large root and fine root per plant, and dry weight of root were the highest at the sewing time of June 1 as the yield of 71.3kg/10a. Optimum sowing time of Scuteilaria baicaiensis GEORGE cultivated after barley was June 1 in southern areas of Korea. Stem length was long in dense planting of 20${\times}$10cm and short in spacious planting of 30${\times}$10cm and 40${\times}$10cm by direct sowing cultivated after barley. Stem diameter was thick in spacious planting of 30${\times}$10cm and 40${\times}$10cm and was thin in dense planting of 20${\times}$10cm by direct sowing cultivated after barley. Length and dry weight of root per plant were decreased in dense planting of 20${\times}$10cm and were increased in spacious planting of 30${\times}$10cm and 40${\times}$10cm by direct sowing cultivated after barley. Yield of dry root was highest in optimum planting density(30${\times}$10cm 33 plants/㎡) by direct sowing cultivated after barley. The correlation coefficient between number of planting plant and stem length showed highly positive correlation. These characters of stem diameter, number of branches, main root length and yield of dry root mentioned above showed negative correlations with planting plants.

  • PDF

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF

The Effect of Lime Application after Cultivating Winter Forage Crops on the Change of Major Characters and Yield of Peanut (동계사료작물 재배후 석회물질 시용이 땅콩의 주요 형질 및 수량에 미치는 영향)

  • Kim, Dae-Hyang;Chim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.103-114
    • /
    • 1995
  • These experiments were conducted for decrease of injury by continuous cropping in the peanut fields of Chonbuk Wangkungarea. The continuous cropping field for four years was used in this experiment. Italian ryegrass and rye were cultivated andlime materials were distributed for improvement of soil fertility. The results were as follows; 1. Forage crops were cultivatedand lime materials were distributed on the continuous cropping field of peanut. The organic matter content of the expermentalplot cultivating Italian ryegrass was only 1.25%. The organic matter content of soil cultivated Italian ryegrass after distributedmagnesium lime was 1.37% and that of soil cultivated Italian ryegrass after distributed gypsum was 1.30%. It was highcontent comparing to that of soil distributed lime materials only. The organic matter content of soil cultivated rye after distributed gypsum was 1.77%. 2. The phosphate content of soil cutivated Italian ryegrass was 332ppm. The phosphate content ofsoil cultivated Italian ryegrass after distributed magnesium lime was 34Oppm and that of soil cultivated Italian ryegrass afterdistributed gypsum was 31 2ppm. The phosphate content of soil cultivated rye only was 386ppm. The phosphate content ofsoil cultivated rye after distributed gypsum was 41 8ppm. This phosphate content was lower than that of soil distributed limematerials only. 3. The phytotoxin content of soil cultivated Italian ryegrass after distributed magnesium lime was decreased to17.7% and that of soil cultivated Italian ryegrass after distributed gypsum was decreased to 25.3%. The phytotoxin content ofsoil cultivated rye after distributed magnesium lime was decreased to 12.0% and that of soil cultivated rye after distributedgypsum was decreased to 12.8% comparing to the phytotoxin content of soil distributed lime materials only. Italian ryegrasswas effective to decrease phytotoxin among the forage crops and gypsum was effective among the lime materials. 4. Abacterial wilt and a late spot of peanut which were known as, main reason of continuous cropping failure were surveyed.lnccidence of a bacterial wilt was 3.4% in the plot cultivated Italian ryegrass only and that was 2.9% in the plot cultivated ryeonly. lnccidence of a bacterial wilt was 2.5% in the plot cultivated Italian ryegrass after distributed magnesium lime and thatwas 2.3% in the plot cultivated rye after distributed gypsum. Inccidence plot cultivated forage crops was lower than that of plotdistributed lime materials. 5. Inccidence of a late spot was high in the plot cultivated forage crops ony, but it was low in the plotcultivated forage crops after distributed lime materials comparing to that of the control plot. 6. The growth and yield of peanutwere bad in the plot cultivated forage crops only comparing to the control plot distributed lime materials only. These resultswere same in the plot cultivated rye after distributed lime materials, but the growth and yield were grown up in the plotcultured Italian ryegrass after distributed lime materials.

  • PDF

Plant Characters of Selfed MET Maize Line (자식(自殖)된 다수다얼성(多穗多蘖性) 옥수수(MET)의 특성(特性) 비교(比較) 시험(試驗))

  • Choe, Bong Ho;Lee, Hee Bong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.166-173
    • /
    • 1985
  • The multiple ear and tiller line (MET), which was selected from a local maize collection and has been selected for earliness by selfing for five generations, was compared its plant characteristics with four U.S. leading hybrids. 1. The general plant growth was a little retarded by poor soil fertility and structure. 2. The fresh weight of the MET line was about 97.8% of the U.S. check varieties. 3. The dry weight of the MET line was also about 94.5% of the check U.S. hybrids (1,695 kg / 10a.). 4. The tillering and eating habits of the MET line had contributed toward increasing fresh and dry weight of the MET line. 5. The average plant height of the MET line was much less than those of the check varieties, due to the selfing depression manifested by the MET line, (234.7cm. of the MET vs 250.7cm. of the check) 6. Apparent differences of disease resistance was observed among varieties studied. The degree of plants infected with the black stripe mosaic virus was over 20% for the check U.S. hybrids, while less than 5% of the MET line was infected with the disease. 7. The grain yield per 10 a of the MET line was far below the check hybrids due to the inbreeding depression of the MET line. However, the kernel number per unit area of the MET line with small size kernel was much greater than that of the check hybrids. The 100 kernel weight of the MET line was around 10 grams. 8. The average fresh and dry matter weight of the three ($sorghum{\times}sudan$ grass) varieties was very much alike with those of the MET line. 9. In conclusion, the use of the MET line for silage production may have dual adventages because of its low seed price and of its small size kernels, which may reduce the amount of seeds required for planting in an unit area.

  • PDF

Effects of Depth and Duration of Flooding on Growth and Yield at Transplanting Stages in Tomato(Lycopersicon esculentum). (토마토(Lycopersicon esculentum)의 이식기(移植期) 침수(浸水) 처리(處理)에 따른 생육(生育) 반응(反應))

  • Guh, Ja-Ock;Roh, Sang-Eun;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man;Oh, Yun-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • Tomatoes are flooded differently 0, 5, 10 and 15 ㎝, according to the developing stages such as transplanting stage under the condition of green house. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. As the depth of flooding got deeper and the hours got longer, plant height, number of leaves, shoot and root decreased significantly. Flowering was possible for 24 hours in the flooding of 0 ㎝, for 6 hours in $5{\sim}10$ ㎝, but not possible after 6 hours in 15 ㎝. Without regard to the depth of flooding, adventitious root came into being before or after 48 hours of the treatment. Root activity diminished gradually as hours of treatment went by, but diminished rapidly over the depth of 5 ㎝. Chlorophyll content decreased similarly as in the case of root activity. Diffusion resistance of stomata cell increased as hours of treatment passed and depth increased. Photosynthesis and respiration diminished according as the hours and depth of treatment increased. Respiration diminished a little gradually but photosynthesis weakened greatly as the depth of treatment became greater and after 48 hours of treatment. Diseases occurred remarkably in proportion to the depth of treatment and the increase of hours. The possibility of preventing by means of insecticide treatment showed the same tendency as in the seedling stage. But its effect was not significant. After 120 hours yields could not be expected because tomatoes died without regard to the depth of flooding. Instead of the depth, numbers of fruits per plant decrease of individuals or variation of average weight of a fruit was recognized. Especially average weight increased in accordance with the increase of the depth. There was positive correlation between all the characters, such as plant height, number of leaves, fresh weight, chlorophyll content, root activity and yield traits, but negative correlation between these and epinastic curvature, diffusion resistance and adventitious root.

  • PDF

Effects of Depth and Duration of Flooding on Growth and Yield at Flowering Stage in Tomato(Lycopersicon esculentum). (토마토(Lycopersicon esculentum)의 개화기 침수 처리에 따른 생육 반응)

  • Guh, Ja-Ock;Han, Sung-Uk;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 1997
  • Tomatoes are flooded differently 0, 5, 10 and 15cm, according to the developing stages such as flowering stage under the condition of greenhouse. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height decreased in the depth of $0{\sim}10cm$ for over 48 hours, in the depth of 15cm for over 24 hours. Number of leaves was the same as in control, and it decreased over. Number of flowers and fruit setting of individuals decreased conspicuously according as the depth and the hours got greater and longer. Adventitious root occurred remarkably in the depth of $0{\sim}10cm$, for over 24 hours and in the depth of 15cm, 12 hours. Epinastic curvature increased greatly as the depth and the hours got greater and longer. Diffusion resistance of stomata cell increased as the depth and the hours got greater and longer. Diseases occurred conspicuously as the hours of flooding got longer rather than as the depth greater. The preventing of diseases caused by insecticide was observed, but it was not greater than in the seedling and transplanting stage. Fertilization was effective in the case of increasing the weight of shoot. Number of fruits per plant did not decrease in the depth of 0cm up to 24 hours, but decreased on the deeper level of flooding and increased as the hours got longer. Moreover with the exception of 120 hours per respective depth of the treatment, average weight of a fruit got greater as the depth and the hours got greater and longer. In the case of epinastic curvature and diffusion resistance, there was negative correlation between all the other investigated characters and positive correlation between weight of a fruits and average weight of a fruit.

  • PDF

Effect of GA3 Concentrations on the Vernalization Period in the Immature Embryo Culture of Barley (Hordeum vulgare) (미숙배 배양시 GA$_3$농도가 보리의 춘화처리 효과에 미치는 영향)

  • 백성범;이종호;김흥배
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.257-263
    • /
    • 1992
  • Immature embryos were tested for investigating the effect of cold treatment duration and GA$_3$ concentration on the vernalization response in barley. Immature embryos were cultured on B$_{5}$ medium with GA$_3$ for 5 days, and were transplanted under 20/15$^{\circ}C$ temperature after cold treatment. Germination rate and shoot length were increased more in 20-day-old embryos than those in 13-day-old ones but germination day was decreased. Addition of 1 or 10 ppm of GA$_3$ to B5 medium was effective on the growth of immature embryos. The higher GA$_3$ concentration was, the shorter time from embryo culture to flag leaf emergence and heading was. The earlist flag leaf emergence and heading were showed on treatment of 1 or 10 ppm of GA$_3$, but GA$_3$ did not completely replace vernalization. The days to flag leaf emergence of immature embryo-cultured barley with cold treatment for two and three weeks was shortened by 3 and 18 days at 1 ppm GA$_3$, and 16 and 20 days at 10 ppm GA$_3$, respectively, when compared to 0 ppm GA$_3$ culture with cold treatment for three weeks. It was at 10 ppm GA$_3$ with 3 weeks cold treatment that showed the lowest culm length, spike length and number of grain per spike. GA$_3$ concentration was not correlated significantly with each character in 1 week cold treatment, but was significant with each character in 2 weeks. In 3 weeks cold treatment, it was except for days to heading. Correlation between cold treatment duration and culm length was negative in 0 ppm GA$_3$. In 1 or 10 ppm of GA$_3$, all characters had highly negative correlation with cold treatment duration.n.

  • PDF

Early Matured Pear Cultivar 'Supergold' with High Quality and Greenish-white Skin for Overseas Trade (조생종 고품질 녹백색 배 '슈퍼골드')

  • Kang, Sam-Seok;Kim, Yoon-Kyeong;Cho, Kwang-Sik;Jeong, Sang-Bouk;Hwang, Hea-Seong;Kim, Myung-Su;Shin, Il-Sheob;Shin, Yong-Uk;Won, Kyeong-Ho;Choi, Jang-Jeon
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.645-650
    • /
    • 2011
  • Pear cultivar 'Supergold' (Pyrus pyrifolia var. culta Nakai) was originated from the cross between 'Chuwhangbae' and 'Manpungbae' with the aims of improving the fruit quality of 'Chuwhangbae' cultivar at Pear Research Station of National Institute of Horticultural & Herbal Science, Rural Development Administration in 1994. 'Supergold' was preliminarily selected in 2002 and named in 2008. The tree shows a vigorous growth habit and semi-spread characters like as 'Manpungbae'. Furthermore, it has sufficient flowers and carries abundant pollen grains, so it can also be used as a pollinator. 'Supergold' is highly resistant to black leaf spot (Alternaria kikuchiana) in the field condition. The optimum harvest time is around Sep. 11th, which is ahead of 'Whangkeumbae' about 5 days in the harvest period. The fruit shape is oblate and fruit skin color is greenish-white at harvesting time. The average weight of fruit is 570 g, and the soluble solids content is $13.6\;^{\circ}Brix$. The flesh is very soft and juicy, and renders good eating quality. Shelf life is about 6 months under the cold storage condition. To determine the self-incompatibility (SI) genotype of 'Supergold' pear cultivar, it was crossed with other cultivars of which SI genotypes have already known. The result of cross-pollinations of 'Supergold' with other cultivars showed relatively high rates of fruit set from 64.5% to 91.0%, except for the cross with pollens of 'Nijisseiki' that represented only 28.8% of fruiting rate. Although sometimes the stigma of 'Supergold' crossed with 'Hayatama', 'Chojuro', and 'Nijisseiki' showed malformed pollen tube tips, 'Supergold' is generally supposed to have cross-compatibility with all other pollen donor cultivars. It is considered that the S-allele of 'Supergold' is $S_3S_4$, which is based on the result of PCR-RFLP.

Influences of Planting Density on Growth and Yield of Perilla frutescens BRITTON var. acuta KUDO (자소(紫蘇)의 재식밀도(栽植密度)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Hi-Jin;Kim, Sang-Gon;Chung, Dong-Hee;Kwon, Byung-Sun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.135-139
    • /
    • 1995
  • In order to determine the optimum planting density of Perilla frutescens which is suitable for the southern part of Korea, agronomic characters, yield of fresh stem, leaf and seed, and yield components were investigated grown in 1985 and 1986 at Mokpo Branch Station of Crop Experiment Station. The heading date was Aug. $14{\sim}15$ and the blooming period was Aug. $19{\sim}21$ regardless of the difference of plant density, but the longest stem length was 135cm in the plant density of $70{\time}40cm$ and the stem length in the plant density of $80{\time}40cm$ was 134cm. The quantity of fresh weight of stem and leaf and fresh weight of seed was high as 531kg/l0a in the plant density of $80{\time}40cm$. The positive correlation such as $0.7315^*,\;0.9024^{**}\;and\;0.7425^*$ were found between stem length and fresh weight of stem and leaf, stem length and fresh weight of seed, fresh weight of stem and leaf and fresh weight of seed and so high significance was recongnized. In the verification of significance of row spacing, the disperse of the stem length was $55.67^{**}$, that of fresh weight of stem and leaf is $268.50^*$, theat of fresh weight of seed was $16.00^{**}$ and high significance was recognized. In the verification of significance of intrarow spacing, the diperse of stem length was $54.21^{**}$, that of fresh weight of stem and leaf was $2,582.00^{**}$, that of fresh weight of seed was $48.00^{**}$ and then high significance was recognized. Accordingly, the proper plant density of perilla frutescens was 80cm of row $spacing{\time}40cm$ of intrarow spacing.

  • PDF

Effect of complex fertilizer treatment on a recovery of reduced turfgrass caused by competing with trees in golf course (복합비료 시비가 골프코스 수목근부 잔디고사 회복에 미치는 영향)

  • Jang Duk-Hwan;Kim Ho-Jun;Lee Tea-Wu;Kim Gun-Wu
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • This study was conducted to effect a complex fertilizer treatment on a recovery of damaged turfgrass caused by competing with tree at area under trees, and to seek for effective management system on damaged areas under trees in golf courses. Available phosphorous and potassium were enough to grow up turfgrass in plots of East valley and Ji San Golf Club. But these plots were acid soil ranged from pH 5.3 to pH 5.5, so that lime fertilizer was required for improving the chemical of soil. The effect on complex fertilizer showed significant f3r the recovery of damaged turfgrass. Turfgrass recovery ratio by complex fertilizer was better in low-density(LD) section of fertilizer than in high-density(HD) section of control. As the result of surveying turfgrass characters according to dates, dry matters in HD sections of control plots were higher than these in LD sections of fertilizer plots in 6 Aug. before sprinkling a complex fertilizer. But dry matters in LD section of fertilizer were, on the contrary, higher than in 6 Sep. after sprinkling complex fertilizer. In view of the result so far conducted, a turfgrass recovery to LD sections of complex fertilizer was batter than that of HD sections of control. Sprinkling complex fertilizer on turfgrass damaged by competing with trees will maintain the turfgrass growth, even though happen to compete between trees and turfgrass.