• Title/Summary/Keyword: Growth Stage

Search Result 4,407, Processing Time 0.037 seconds

Studies on the effects of radiation from radioisotopes incorporated into plants (Ⅶ) Effects of internally administered P-32 on the growth of soybeans (작물에 흡수된 방사성 동위원소의 내부조사효과에 관한 연구(제7보) 대두의 생장에 미치는 P-32의 영향)

  • 김길환
    • Journal of Plant Biology
    • /
    • v.12 no.3
    • /
    • pp.15-25
    • /
    • 1969
  • To investigate the radiation effect of P-32 on the soybean plants, the seeds treated with various levels of P-32 solution were sown and cultured in the pots. The growth of the plants and the contents of the macroelements were observed and the following results were obtained. 1) The linear growth of the plants at the early stage seemed to have been promoted by the low-level P-32 treatemnt. At the later growing stage, however, this difference among treatments were less conspicuous. 2) The plants of high level P-32 application showed some growth damaging symptom at the early growing stage. Later this damage was recorded as the time went on and these plants showed even better growth than the control. As a result at the late growing stage, they ensued highest growth. 3) The plants showed in general more growth at the low activity level than at the high-level at the early growing stage. At the late stage, however, the high-level activity promoted more growth than the low-level. 4) At the early growing stage P-32 treatment produced in general significantly more lower than control. At the later stage, however, this difference was not clearly seen. 5) The P-32 treatment seemed to have stimulated earlier florescence and this tendency was more clearly observable eapecially at the high activity level. 6) The weight of the air-dried seeds tended to be increased through P-32 treatment by 10-45%. This tendency was clearly observed especially at the low-level activity. 7) As for the contents of the various macroelements in the leaves, the nitrogen showed significantly larger contents at the middle level(S1) P-32 treatments. The phosphorous contents showed also highest at the middle levels activity and lower both at the high and low-activity levels. The potassium contents was proved, on the contrary, higher at the low-level activity and lower at the high-level. 8) The nitrogen contents in the stems was found significantly higher than control, except at the low-activity level. The phosphorous showed higher contents at the low-activity level and no significant difference at the high-activity level. As for the contents of potassium, calcium and magnesium, three seemed no significant difference among treatments. However, the magnesium showed somewhat higher content at the low-activity level, whereas the calcium was proved high than control. 9) The inorganic contents in the root showed that N and P in the P-32 treated plant were significantly higher than the control and the K-contents was, on the contrary, significantly higher at the control than the rest of the treatments. As for the calcium and magnesium there showed no difference among all treatments.

  • PDF

Agricultural Fertilizers as Economical Alternative for Cultivation of Haematococcus pluvialis

  • Dalay Meltem Conk;Imamoglu Esra;Demirel Zeliha
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.393-397
    • /
    • 2007
  • A Haematococcus pluvialis strain isolated from the ruins of Ephesus in Turkey was investigated as regards its adaptation to laboratory conditions and maximum growth rate. In the first stage of the experiment, the growth of H. pluvialis was compared in common culture media. Furthermore, in an effort to minimize the culture costs, the second stage of the experiment compared the growth rate in the culture medium selected in the first stage with that in commercial plant fertilizers. The results demonstrated that the maximum cell concentration of 0.90 g/l, corresponding to a growth rate of $0.150d^{-1}$, was found with an N-P-K 20:20:20 fertilizer under a light intensity of $75{\mu}mol$ photons $m^{-2}s{-1}$ on the $12^{th}$ day of cultivation.

Comparison of Underground Root Growth Characteristics of Major Cool-Season Grasses according to Establishment Stages in Sports Turf Designed by the USGA Soil System (USGA 지반으로 설계된 스포츠 잔디밭에서 조성단계별 주요 한지형 잔디의 지하부 뿌리생육 특성 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.166-176
    • /
    • 2015
  • Research was initiated to investigate root growth characteristics of major cool-season grasses (CSG) and to collect basic information useful for sports turf design, construction and maintenance. Several turfgrasses were evaluated in the USGA (United States Golf Association) soil system. Turfgrass entries were comprised 3 blends and 3 mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.). Significant differences were found in root growth, rooting potential and rooting development. These characteristics increased with time after seeding, but varied with establishment stages. In early stage, root length was highest with PR, intermediate with TF and lowest with KB. Evaluation in a middle stage indicated that root growth was similar to early-stage evaluation, but decreased by 13 to 31% compared with early-stage values. Root growth of late stage increased by 34 to 85% over middle-stage root growth. Overall, thhere was not much difference in root length among treatments, with all except Mixture I reaching 22cm in root length. Rooting potential ranking was variable with establishment stage, being PR > KB > TF in early stage, PR > TF > KB in middle stage and TF > PR > KB in late stage. At the end of the study, TF was rated best for rooting development, followed by PR and finally KB. Our results showed that TF was the best species in regard to overall rooting characteristics. TF exhibited excellent rooting development with time after establishment. Bunch-type PR showed fast root growth in the early stage, but rooting quality characteristics decreased with time, especially for rooting development. By contrast, rhizomatous-type KB was poor in early-stage root growth, but rooting characteristics improved with time after establishment. These variations in rooting characteristics among CSGs were considered to arise from differences in establishment vigor, growth habit and genetic characteristics. Information on root growth, rooting potential and rooting development by establishment stages will be useful for sports turf design, construction and maintenance.

Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling (광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정)

  • Son, Jung-Eek;Lee, Hoon;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.

Evaluating the Effect of Specimen Thickness on Fatigue Crack Growth in AZ31 Alloy Using ANOVA (분산분석법을 이용한 AZ31 합금의 피로균열성장에 미치는 시편두께 효과 평가)

  • Choi, Seon Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.9-16
    • /
    • 2020
  • This study aims to assess the effects of specimen thickness (ST) on fatigue crack growth in the early stages of crack propagation and near failure in magnesium alloys. The analysis of variance (ANOVA) method was adopted because fatigue crack propagation in magnesium alloys exhibits statistical behavior. The equality of variance test and residual diagnostics were performed on the grown cracks to confirm the validity of ANOVA by verifying the normal distribution and mutual independence of the residuals and their homoscedasticity. ANOVA confirmed that ST heavily impacts crack growth; i.e., when ST is smaller, cracks grow faster in the early crack propagation stage and break more quickly before the formation of larger cracks. We found that ST significantly affects fatigue crack growth in the early crack propagation stage and near the failure stage in magnesium alloys. The regression model was also used to predict crack formation near the failure stage.

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory (식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향)

  • Kim, Dong Eok;Lee, Hye Jin;Kang, Dong Hyeon;Lee, Gong In;Kim, You Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.113-120
    • /
    • 2023
  • Smart farms are steadily increasing in research to minimize labor, energy, and quantity put into crops as IoT technology and artificial intelligence technology are combined. However, research on efficiently managing crop growth information in smart farms has been insufficient to date. In this paper, we propose a management technique that can efficiently monitor crop growth information by applying autonomous sensors to smart farms. The proposed technique focuses on collecting crop growth information through autonomous sensors and then recycling the growth information to crop cultivation. In particular, the proposed technique allocates crop growth information to one slot and then weights each crop to perform load balancing, minimizing interference between crop growth information. In addition, when processing crop growth information in four stages (sensing detection stage, sensing transmission stage, application processing stage, data management stage, etc.), the proposed technique computerizes important crop management points in real time, so an immediate warning system works outside of the management criteria. As a result of the performance evaluation, the accuracy of the autonomous sensor was improved by 22.9% on average compared to the existing technique, and the efficiency was improved by 16.4% on average compared to the existing technique.

Changes in Growth Characteristics of Waxy Corn 'Ilmichal' due to Low Temperature during the Seedling Stage (일미찰옥수수의 유묘기 저온에 따른 생육특성 변화)

  • Jeon, Seung Ho;Oh, Seung Ka;Kim, Han Yong;Na, Chae-In;Bae, Hui Su;Cho, Young Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.426-435
    • /
    • 2020
  • To determine the damages to waxy corn caused by low temperature weather, we investigated the relationship between the temperature and duration of low temperature treatment and the changes in growth characteristics during the recovery period after the treatments in different growth periods. Growth inhibition started in the low temperature group treated at temperatures below 5℃ for three days. The inhibition ratio (IR) was more than 22% or more in all sample groups. As the treatment duration increased and the Temperature decreased, the growth was more greatly inhibited than that in the control. The IR was the highest at 27% or more in the 2nd leaf stage group treated at below 5℃ for 5 days. The IR was in the order of 2nd leaf stage > 1st leaf stage > coleoptile. The IR during recovery was the highest in the 2nd leaf stage group treated at -3℃ degree for 7 days, nd the values were 82% and 98% for NDVI and Fv/Fm, respectively. Especially, all groups treated at -3℃ showed either no changes or decreases in the growth characteristics. As a result, growth inhibition increased as the temperature decreased, and as the duration of the low temperature increased. The degree of damage was in the order of 2nd leaf stage > 1st leaf stage > coleoptile. All early seedlings stopped growing and withered when exposed to temperatures at or below -3℃ for 3 days or more.

Growth Characteristics as Affected by Polyethylene Film-Mulching in Sesame

  • Lee, Sung-Woo;Kang, Churl-Whan;Kim, Dong-Hwi;Shim, Kang-Bo;Seong, Nak-Sul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.269-272
    • /
    • 2002
  • This study was carried out to investigate varietal differences on growth characteristics under the conditions of PE film-mulching and non-mulching in sesame. At maturing stage from 76 to 95 days after sowing, Yangbaeckkae, non-branching plant type, under non-mulching showed larger leaf area index (LAI) than that of film-mulching, while plant height and the number of capsules per plant were similar to those of film-mulching. LAI of Ahnsankkae, branching plant type, under non-mulching was similar to film-mulching, while plant height and the number of capsules per plant were smaller than those of film-mulching. Net assimilation rate (NAR) of two varieties under non-mulching was lower at seedling stage from 25 to 35 days after sowing but higher at flowering stage from 45 to 55 days after sowing. At maturing stage from 66 to 77 days after sowing, NAR and crop growth rate (CGR) of Yangbaeckkae under non-mulching were greater than those of film-mulching, whereas those of Ahnsankkae under non-mulching were lesser than those of film-mulching. Yield under non-mulching was decreased by 7 % in Yangbaeckkae and 33 % in Ahnsankkae compared with that of film-mulching, therefore Yangbaeckkae was more adaptable for non-mulching than Ahnsankkae. Main factors decreasing yield of Yangbaeckkae under non-mulching were small LAI, NAR, and CGR at the stage of young seedling, and small number of capsules at early maturing stage from first flowering to 20 days after first flowering.

Prediction of Tobacco Yield by Means of Meteorological Factors During Growing Season (기상요인에 의한 잎담배 수량예측)

  • 이철환;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.11 no.1
    • /
    • pp.27-39
    • /
    • 1989
  • This study was conducted to determine the time and methods of predicting tobacco yield. by analysis of climatic factors in the period of tobacco season during 8 years from 1979 to 1986 at the Daegu district, south eastern part of Korean peninsular. The results obtained are summarised as follows: 1. Climatic factors of each month which have influence on tobacco yield were the amount of rainfall in May and sunshine hours in July. Among climatic factors at tobacco growth stages, the precipitation yield. But these meteorological factors had different effect on variety. 2. Between tobacco yields and climatic factors by even values of each month, tobacco yield was estimated by equations, flue cured tobacco :Y=190.6-5.230X1+ 0.474$\times$2 + 0.142X3(Xl : Minimum temperature of April, X2: Precipitation during May, X3:Sunshine duration on July), air cured tobacco : Y= 195.3-0.447Xl + 0.363$\times$2 + 0.l12$\times$3(Xl :Maximum temperature of May, X2:Precipitation during May. X3: Sunshine duration on July). While between tobacco yield and climatic factors at different growth stage, predicting equation of yield could be derived, flue cured tobacco : Y=205.8+0.510Xl +0.289$\times$2 + 0.305$\times$3 (Xl :Average temperature during the early growth stage, X2 :Precipitation during the early and maximum growth stage, X3 : Sunshine hours during the leaf and tips maturing stage), air cured tobacco Y=194.T-0.498Xl 10.615$\times$2+0.121$\times$3(Xl ;Maximum temperature during the transplanting time, X2 : Precipitation during the maximum growth stage, X3 : Sunshine hours during the leaf and tips maturing stage).

  • PDF