• Title/Summary/Keyword: Growth Performance Index

Search Result 341, Processing Time 0.027 seconds

Comparative analysis of the pig gut microbiome associated with the pig growth performance

  • Jun Hyung Lee;San Kim;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sriniwas Pandey;Jae Hyoung Cho;Sumin Ryu;Minho Song;Jin Ho Cho;Sheena Kim;Hyeun Bum Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.856-864
    • /
    • 2023
  • There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.

The Selection of Nursery Polybag Size on Effect of Growth and Quality of Khaya Anthotheca (Meliaceae) Seedlings under Nursery Condition in Bangladesh

  • Begum, Nasrat;Chowdhury, Golam Mustafa;Hoque, Muhammad Azizul
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2021
  • An experiment was conducted to observe the effect of polybag size on the growth and quality of Khaya anthotheca seedlings during September 2016 to June 2017 at the nursery of Silvicultural Research Division of Bangladesh Forest Research Institute. Three different polybag size such as T1 (15 cm×23 cm), T2 (13 cm×18 cm) and T3 (11 cm×15 cm) with four replications were used for the experiment. The experiment was designed in Completely Randomized Design (CRD) with four replications. Different sized polybags showed significant influence on survival percentage (T1-100%, T2-93.5%, T3-88%) and growth parameters (height, root collar diameter, leave number and root length) of the seedlings. The species grown in T1 size polybag was observed to be superior to other bag size. Dickson's Quality index of seedlings raised in T1 size polybag was observed highest value which is the indicator of best quality seedlings. Therefore, the use of T1 poly bag size can be suggested for seedling production of K. anthotheca in the nursery.

Germination and Growth Performance of A Native Threatened Tree Species Quercus gomeziana A. Camus in Nursery Stage: Case of Bangladesh

  • Nandi, Rajasree;Dey, Soma;Hossain, Mohammed Kamal
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • This study was conducted to investigate the effect of different pre-sowing treatments of seeds on germination and growth performance of native threatened tree species Quercus gomeziana A. Camus at the nursery of Chittagong University, Bangladesh. Furthermore, seedling growth attributes under different doses of fertilizer (urea) was also experimented to find the best dose of fertilizer on this tree species at the nursery stage for better field level growth. Seeds were placed to six pre-sowing treatments e.g. control (PT0), treated with sand paper rubbing (PT1), nicking (PT2), seeds immersed in cold water for 48 hours (PT3), seeds immersed in cold water for 7 days (PT4) and seeds sown at propagator house with increased temperature (PT5). It was found from the study that germination was started earlier (at 31 days) in treatments sand paper rubbing (PT1) and nicking (PT2). The highest germination percentage (93%) was in PT1 followed by 86% in seeds immersed in cold water for 7 days (PT4) and 80% in PT0 (control). Germination percentage was observed least (63%) in PT2 even though germination started earlier. For fertilizer dose experiment to seedlings at the nursery level, treatment FT1: 100 kg/ha (0.33679 g urea/pot/seedling) comparing with other treatments FT0: 0 kg/ha (Control), FT2: 200 kg/ha (0.67358 g urea/pot/seedling), FT3: 300 kg/ha (1.01037 g urea/pot/seedling) showed better performance in case of collar diameter (6.74 mm), number of leaves, shoot dry weight (19.74), total dry weight (28.16 g), total fresh weight (67.96 g), volume index (3904.82), sturdiness (127.69). Finally, it can be concluded that Quercus gomeziana seedlings revealed better performances under the treatment FT1 in growth and biomass production. Findings of this study will be helpful to take decision on organic fertilizer dose application to seedlings of Q. gomeziana for large scale plantation and conservation of this species.

Photochemical assessment of maize (Zea mays L.) seedlings grown under water stress using photophenomics technique

  • Ham, Hyun Don;Kim, Tea Seong;Yoo, Sung Yung;Park, Ki Bae;Kim, Tae Wan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.341-341
    • /
    • 2017
  • Abiotic stress adversely affects crop growth worldwide. Drought of the major abiotic stresses have the most significant impact on all of the crop. The main objective of this study was to assess the effects of drought stress on photochemical performance and vitality of maize (Zea mays L.). The photochemical characteristics were analyzed in the context of period of drought stress during the maize growth. Drought experiment was carried out for four weeks, thereafter, the drought treated maize was re-watered. The polyphasic OJIP fluorescence transient was used to evaluate the behavior of photosystem II (PSII) and photosystem I (PSI) during the entire experiment period. In drought stress, the performance Index (PI) level was reached earlier when compared to the controls. For the screening of drought stress tolerance the drought factor index (DFI) of each variety was calculated as follow DFI= log(A) + 2log(B). All the fourteen cultivars show DFI ranged from -0.69 to 0.30, meaning less useful in selection of drought tolerant cultivars. PI and electron transport flux values of fourteen cultivars were to indicate reduction of photosynthetic performance during the early vegetative stage under drought stress. In conclusion, DFI and energy flux parameters can be used as photochemical and physiological index.

  • PDF

Assessment of Smoke Risk of Combustible Materials in Fire (화재 시 가연성 물질의 연기 위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2020
  • The smoke hazard assessment of building materials focusing on smoke performance index-II (SPI-II) and smoke growth index-II (SGI-II) was investigated. The test species used were Japanese cedar, spruce, lauan, and red pine. The smoke characteristics of wood specimen were investigated using a cone calorimeter (ISO 5660-1). SPI-II was measured after the combustion reaction increased by 1.31~2.15 times based on red pine. The fire risk by SPI-II increased in the order of spruce, lauan, Japanese ceda, and red pine. SGI-II increased by 1.18~2.55 times compared to that of Japnese ceda. The fire risk caused by SGI-II increased in the order of Japanese ceda, spruce, lauan, and red pine. COmean concentrations were ranged from 58 to 133 ppm, which was higher than permissible exposure limits of the occupational safety and health administration (OSHA), 50 ppm. Therefore, woods such as red pine containing various volatile organic substances, were considered to be highly smoke hazardous due to low SPI-II and high SGI-II.

Fire Risk of Wood Treated With Boron Compounds by Combustion Test (연소시험에 의한 붕소 화합물 처리 목재의 화재위험성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • Experiments on the combustion characteristics of untreated wood specimens and also treated ones with boric acid and ammonium pentaborate were carried out using a cone calorimeter according to ISO 5660-1 standard. As a result, comparing to untreated specimen, the fire performance index (FPI) of the specimens treated with boron compounds increased by 1.2 to 2.1 times and the fire growth index (FGI) increased by 1.6 to 8.4%. Also, total smoke release rate (TSR) was 9.0 to 28.3% lower than that of the untreated specimen. It is understood that the test specimens treated with the boron compound produces a carbonized layer with a flame retarding effect. The highest CO concentration, 0.01112%, for the untreated specimen was observed at 418 s, but the specimens treated with boron compound decreased 13.2 to 37.5% compared to untreated specimen. Therefore, wood treated with boron compounds is expected to have lower fire hazards and risks.

Developing a performance index for efficient improving techniques and implement of Smart Water Management (스마트물관리기술 평가툴 개발)

  • Lim, Kwangsuop;Lee, Namsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.578-578
    • /
    • 2016
  • In the past decade, many countries developed varies promising theories, methodologies and technologies for water resources management, such as Smart Water in Korea, eWater in Australia, Intelligent Water in Untied States, and Internet of Water in China. It is no exaggeration to say that Smart Water Management(SWM) will have a major role to play in addressing the global water challenges in the background of climate change, population growth and rapid urbanization. As a result, we can see major shifts taking place in the structure of the water industry, with a need for new approaches, skills, and water management policies. All these point towards a brighter future for the smart water sector and a new water paradigm, with applications and potential throughout the water cycle. However, each countries have their technology and industry standard system which may swift similar innovation and technology into different channels. In that sense, developing a common performance index and standard docking adapter for assessing Smart Water Management Initiatives(SWMI) is crucial for drawing a linkage of SWMI and SWMs to a way to implement advanced technology across Asia and Pacific. The performance index and standard docking adapter will facilitate quantitative and qualitative effects of utilized SWM techniques.

  • PDF

Performance Improvement Using an Automation System for Segmentation of Multiple Parametric Features Based on Human Footprint

  • Kumar, V.D. Ambeth;Malathi, S.;Kumar, V.D. Ashok;Kannan, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1815-1821
    • /
    • 2015
  • Rapid increase in population growth has made the mankind to delve in appropriate identification of individuals through biometrics. Foot Print Recognition System is a new challenging area involved in the Personal recognition that is easy to capture and distinctive. Foot Print has its own dimensions, different in many ways and can be distinguished from one another. The main objective is to provide a novel efficient automated system Segmentation using Foot Print based on structural relations among the features in order to overcome the existing manual method. This system comprises of various statistical computations of various foot print parameters for identifying the factors like Instep-Foot Index, Ball-Foot Index, Heel- Index, Toe- Index etc. The input is naked footprint and the output result to an efficient segmentation system thereby leading to time complexity.

Effects of Fertilizer Treatment on the Growth Performance of 1-Year-Old Containerized Seedlings in Chionanthus retusus

  • Choi, Chung Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.586-596
    • /
    • 2020
  • Chionanthus retusus has been used for landscaping and gardening trees, foods and medicines. This study was carried out to analyze the effect of fertilization on the growth performance of container seedlings (1-year-old) in C. retusus. We used multifeed 19 (MF) as a fertilizer, and measured the height, root collar diameter (RCD), biomass, seedling quality index (SQI) chlorophyll contents and chlorophyll fluorescence of the seedlings. The findings of this paper showed that the height, RCD, H/D ratio, T/R ratio and the fresh and dry weight of seedlings increased after fertilization. The moisture content of the stem and root did not show any significant difference among fertilizations, except in the case of the leaf. Production distribution such as the dry weight ratio of leaves and the stem dry weight ratio of fertilized seedlings had a higher value than that of non-treatment. SQI was the highest in MF 1,000 mg/L and 2,000 mg/L treatment. Chlorophyll contents (SPAD value) also increased with the increase in fertilization concentrations. Chlorophyll fluorescence (Fv/Fm) showed the highest value of 0.8 in MF 2,000 mg/L treatment.

Exserohilum turcicum (Northern Corn Leaf Blight) Severity on Maize Hybrids and the Associated Crop Performance in O.R. Tambo District, Eastern Cape, South Africa

  • Mxolisi Mtyobile;Silindile Miya
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • Exserohilum turcicum is a fungus that causes northern corn leaf blight (NCLB) and has deleterious effects on maize production globally. Therefore, it is prudent to mitigate the effects of NCLB using genetic diversity. The objective of this research was to assess the severity of NCLB disease on the growth and yield of various maize genotypes. A randomized complete block design field experiment, replicated three times, was conducted to evaluate the effect of E. turcicum on 10 maize hybrids. Percent disease index, plant height, and leaf area were recorded at the silk stage. Cob weight, grain fresh weight, and grain yields were determined at harvest maturity. All measured parameters were significantly different (P<0.05) between the maize hybrids. Of the 10 genotypes, four (PAN 4R-528R, PAN 4R-728BR, PAN 3R-724BR, and P1788BR) were susceptible, five (DKC74-74BR, PAN 5R-582R, PAN 5R-890R, PAN 5R-854R, and PAN 5R-590R) were moderately susceptible, and one (DKC80-40BR) was moderately resistant. DKC80-40BR exhibited greater cob weight, while DKC74-74BR was superior in all other plant growth and yield components. Interestingly, although not significant (P>0.05) and high, maize growth and yield parameters had negative correlations with disease incidence, except for grain fresh weight. Therefore, DKC80-40BR may be selected for cultivation in areas prone to NCLB to reduce maize susceptibility to the disease, while DKC74-74BR may improve crop performance. These hybrids could be considered as potential sources of resistance or tolerance to NCLB for further validation by plant breeders.