• Title/Summary/Keyword: Group Recommendation

Search Result 404, Processing Time 0.027 seconds

Evaluating the NGCTM Evidence Based Guideline of Prompted Voiding for Use in Korea (미국 NGCTM 배뇨자극요법 근거중심 가이드라인의 국내 적용가능성 평가)

  • Park, Myonghwa;Kim, Myung Ae
    • Korean Journal of Adult Nursing
    • /
    • v.17 no.4
    • /
    • pp.622-634
    • /
    • 2005
  • Purpose: The purpose of this study was to evaluate the applicability of the evidence based guideline for prompted voiding by Lyons & Specht (2001) in National Guideline $Clearinghouse^{TM}$ for use in Korea based on the experts' opinions. Method: The target expert group consisted of 8 registered nurses, 6 physicians, and 5 nursing professors who are experts in urinary incontinence. This study used a questionnaire survey. The appropriateness, applicability, and the present application of each recommendation in the guideline were analyzed with descriptive statistics using the SPSS program, with content analysis based on the experts' opinions. Result: The scores on each recommendation's appropriateness showed the high degree of agreement among nurses, physicians, and nursing professors. However, the recommendation for 'use of oxybutinin' showed the lowest score as 5.89. It was notable that the most recommendations scored lower for applicability compared with appropriateness. The reasons for lower scores for applicability were the lack of clinicians' knowledge of assessment and management, and the lack of resources in clinical settings in Korea. Conclusion: This study will augment the understanding of the actual urinary incontinence management in Korean clinical settings and can be used as the baseline data for further study of tailoring international guidelines into local and national clinical settings.

  • PDF

A Study on the Continuance Intention of Size Recommendation Services -Focusing on the Application of Expectation-Confirmation Model and the Moderating Effect of Familiarity- (사이즈 추천 서비스의 지속사용의도에 관한 연구 -기대일치모형의 적용과 친숙성의 조절효과를 중심으로-)

  • Sangwoo Seo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.350-366
    • /
    • 2024
  • This study aimed to clarify the continuance intention of users of size recommendation services. The expectation-confirmation model framed the analysis of the 180 data points collected. The analysis determined the mediating effects of perceived usefulness and satisfaction on the relationship between expectation-confirmation and continuance intention. The moderated mediation effect of familiarity was also analyzed, and a path analysis was conducted using PROCESS macro. Results showed that expectation-confirmation had a significant effect on perceived usefulness, satisfaction, and continuance intention. Findings indicated that perceived usefulness affected satisfaction and continuance intention and confirmed that satisfaction affected continuance intention. In the relationship between expectation-confirmation and continuance intention, mediation analysis verified the mediation and double mediation of perceived usefulness and satisfaction. In the group with an above-average familiarity value, moderation analysis confirmed a moderating effect between perceived usefulness and satisfaction. Above-average familiarity values also confirmed that the moderating effect on continuance intention was significant.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

Improved Internet Resource Recommendation Method using FOAF and SNA (FOAF와 SNA를 이용한 개선된 인터넷 자원 추천 방법)

  • Wang, Qing;Sohn, Jong-Soo;Chung, In-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.165-176
    • /
    • 2012
  • In recent years, due to rapidly increasing user-created internet contents coupled with the development of community-based websites, the internet resource recommendation systems are attracting attentions of the users. However, most of the systems have failed in properly reflecting users' characteristics and thus they have difficulty in recommending appropriate resources to users. In this paper, we propose an internet resource recommendation method using FOAF and SNA which fully reflects the characteristics of users. In our method, 1) we extract the data about user characteristics and tags using FOAF; 2) we generate graphs representing users, user characteristics and tags after inserting data into 3 matrixes and integrating them; 3) we recommend the appropriate internet resources after selecting common characteristics of the recommended items and Hot tags by analyzing social network. For verification of our proposed method, we implemented our method to establish and analyze an experimental social group. We verified through our experiments that the more users added in the social network, the higher quality of recommendation result we got than the item-based recommendation method. By using the suggested idea in this paper, we can make a more appropriate recommendation of resources to users while effectively retrieving explosively increasing internet resources.

A Study on the Effectiveness of Using Keywords in Book Reviews for Customized Book Recommendation for Each Personality Type (성격유형별 선호도서 추천을 위한 서평 키워드 활용의 유효성 연구)

  • Cha, Yeon-Hee;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.3
    • /
    • pp.343-372
    • /
    • 2021
  • The purpose of this study is to select keywords that can recommend books by personality type, and to test whether the chosen keywords can be actually used in the categorization and customized recommendation of books for each personality type. To achieve the research goal, this study chose books that match the level of fifth and sixth grade elementary school students and first grade middle school students and commissioned an expert group to categorize the books into groups that are preferred by each personality type. As a result of the classification, half of the books in which more than five experts agreed showed high consensus. In addition, the results of classifying books by personality type with keywords extracted by the automatic word extraction system by collecting the book review data of the selected books were similar to the results of the final judgement by the expert group, except for a few books. In conclusion, this study proved that it is possible to classify and recommend books that are likely to be preferred by different personality types using review keywords.

A study on the individual and group behavior based customer profile model for personalized products recommendation (개인화된 제품 추천을 위한 개인과 그룹 행동에 기반한 고객 프로파일 모델 연구)

  • Park Yu-Jin;Jang Geun-Nyeong;Jeong Yu-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1812-1818
    • /
    • 2006
  • 일대일 마케팅을 실현하고 정보 과다 문제의 해결책으로 등장한 추천시스템의 다양한 기법을 적용하기 위해서는 고객의 관심 분야에 대한 정보인 고객 프로파일의 정의가 선행되어야 할 것으로 판단된다. 본 연구에서는 고객에게 개인화된 정보를 추천하기 위해 고객 개인의 행동과 그 고객이 속한 그룹의 행동 정보에 기반한 고객 프로파일 모델인 IGBCPM(Individual Group Behavior Customer Profile Model)을 제시한다.

  • PDF

The Effect on Selective Attribute and Satisfaction by Customer's Characteristics, Use and Reference Group for Hotel Restaurants (호텔 레스토랑 고객의 특성, 이용 목적 및 준거 집단에 따른 선택 속성과 만족도에 미치는 영향)

  • Jun, Hwa-Jin;Park, Kwang-Yong;Kim, Jong-Phil
    • Culinary science and hospitality research
    • /
    • v.13 no.3
    • /
    • pp.220-238
    • /
    • 2007
  • This study investigates the importance of customers who use hotel restaurants on the basis of literature and actual data, establishes positioning strategies to stimulate hotel restaurants amidst an intensely competitive market, and sets up marketing strategies that can be applied to hotel restaurant business from the analysis results. Determinant factors for hotel restaurants were service quality, food, atmosphere and cleanness, brand and reputation, the attitude and appearance of attendants, and variety of menu, in the order of importance. As for the analysis results for satisfaction, the higher the customers regarded on the attitude and appearance of attendants and the food of the restaurant, the higher the overall satisfaction, the intention of revisiting, and the intention of recommendation of the customers became. Therefore, the marketing and promotion staffs of hotel restaurants should search for the ways to meet these needs of customers as much as possible, and identify the usage inclinations and satisfaction level of customers when carrying out marketing activities and establishing customer relationship marketing strategies.

  • PDF

Guideline for Prevention of Constipation in Korean Elderly - Local Adaptation of the $NGC^{TM}$ Guideline for Prevention of Constipation in the Old Adult Population - (한국 노인의 변비예방 지침 - $NGC^{TM}$ 노인의 변이예방 가이드라인을 변용한 -)

  • Park, Tae-Nam
    • Research in Community and Public Health Nursing
    • /
    • v.17 no.3
    • /
    • pp.315-325
    • /
    • 2006
  • Purpose: The Purpose of this study was to build up guidelines for preventing constipation in the Korean elderly based on the National Guideline $Clearinghouse^{TM}$ Guideline. Method: The process is composed of four steps: first. the composition of an expert group; second, the evaluation by the expert group about the appropriateness and applicability of each recommendation in the guideline; third, systematic literature review for evidence searching; and fourth. the formation of guidelines for Preventing constipation in the Korean elderly according to experts' opinions and literature review. Result: The appropriateness and applicability of each recommendation showed high scores, but the score of applicability was lower than that of appropriateness. The reasons for lower score of applicability were lack of cognition on the importance of constipation management and lack of recent information and evidence-based knowledge on constipation. There were some inadequate recommendations in Korean clinical setting. So the modified and replaced recommendations were added to the guidelines for preventing constipation in the old adult population to improve the applicability in Korea. Conclusion: The results of this study can be used as fundamental baseline data for future study to develope guidelines for management of constipation in the elderly and will be adapted locally for Korean clinical setting.

  • PDF

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

An Improved Personalized Recommendation Technique for E-Commerce Portal (E-Commerce 포탈에서 향상된 개인화 추천 기법)

  • Ko, Pyung-Kwan;Ahmed, Shekel;Kim, Young-Kuk;Kamg, Sang-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.835-840
    • /
    • 2008
  • This paper proposes an enhanced recommendation technique for personalized e-commerce portal analyzing various attitudes of customer. The attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information". We implicitly track customer attitude to estimate the rating of products for recommending products. We classified user groups which have similar preference for each item using implicit user behavior. The preference similarity is estimated using the Cross Correlation Coefficient. Our recommendation technique shows a high degree of accuracy as we use age and gender to group the customers with similar preference. In the experimental section, we show that our method can provide better performance than other traditional recommender system in terms of accuracy.