• Title/Summary/Keyword: Group Recommendation

Search Result 404, Processing Time 0.027 seconds

Performance Analysis of Group Recommendation Systems in TV Domains

  • Kim, Noo-Ri;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Although researchers have proposed various recommendation systems, most recommendation approaches are for single users and there are only a small number of recommendation approaches for groups. However, TV programs or movies are most often viewed by groups rather than by single users. Most recommendation approaches for groups assume that single users' profiles are known and that group profiles consist of the single users' profiles. However, because it is difficult to obtain group profiles, researchers have only used synthetic or limited datasets. In this paper, we report on various group recommendation approaches to a real large-scale dataset in a TV domain, and evaluate the various group recommendation approaches. In addition, we provide some guidelines for group recommendation systems, focusing on home group users in a TV domain.

Enhancing Similar Business Group Recommendation through Derivative Criteria and Web Crawling

  • Min Jeong LEE;In Seop NA
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2809-2821
    • /
    • 2023
  • Effective recommendation of similar business groups is a critical factor in obtaining market information for companies. In this study, we propose a novel method for enhancing similar business group recommendation by incorporating derivative criteria and web crawling. We use employment announcements, employment incentives, and corporate vocational training information to derive additional criteria for similar business group selection. Web crawling is employed to collect data related to the derived criteria from 'credit jobs' and 'worknet' sites. We compare the efficiency of different datasets and machine learning methods, including XGBoost, LGBM, Adaboost, Linear Regression, K-NN, and SVM. The proposed model extracts derivatives that reflect the financial and scale characteristics of the company, which are then incorporated into a new set of recommendation criteria. Similar business groups are selected using a Euclidean distance-based model. Our experimental results show that the proposed method improves the accuracy of similar business group recommendation. Overall, this study demonstrates the potential of incorporating derivative criteria and web crawling to enhance similar business group recommendation and obtain market information more efficiently.

Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment (유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천)

  • Kim, Jae-Kyeong;Oh, Hee-Young;Kwon, Oh-Byung
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

A Personalized Recommendation Procedure for E-Commerce

  • Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Woo-Ju;Kim, Je-Ran;Suh, Ji-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.192-197
    • /
    • 2001
  • A recommendation system tracks past actions of a group of users to make a recommendation to individual members of the group. The computer-mediated marketing and commerce have grown rapidly nowadays so the concerns about various recommendation procedures are increasing. We introduce a recommendation methodology by which e-commerce sites suggest new products of services to their customers. The suggested methodology is based on web log analysis, product taxonomy, and association rule mining. A product recommendation system is developed based on our suggested methodology and applied to a Korean internet shopping mall. The validity of our recommendation system is discussed with the analysis of a real internet shopping mall case.

  • PDF

A Recommendation Procedure for Group Users in Online Communities

  • O Hui-Yeong;Kim Hye-Gyeong;Kim Jae-Gyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.344-353
    • /
    • 2006
  • Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.

  • PDF

Social Network Group Recommendation Using Dynamic User Profiles and Collaborative Filtering (동적 사용자 프로필 및 협업 필터링을 이용한 소셜 네트워크 그룹 추천)

  • Yang, Heetae;Cha, Jaehong;Ahn, Minje;Lim, Jongtae;Li, He;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.11-20
    • /
    • 2013
  • Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.

A Group Modeling Strategy Considering Deviation of the User's Preference in Group Recommendation (그룹 추천에서 사용자 선호도의 편차를 고려한 그룹 모델링 전략)

  • Kim, HyungJin;Seo, Young-Duk;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1144-1153
    • /
    • 2016
  • Group recommendation analyzes the characteristics and tendency of a group rather than an individual and provides relevant information for the members of the group. Existing group recommendation methods merely consider the average and frequency of a preference. However, if the users' preferences have large deviations, it is difficult to provide satisfactory results for all users in the group, although the average and frequency values are high. To solve these problems, we propose a method that considers not only the average of a preference but also the deviation. The proposed method provides recommendations with high average values and low deviations for the preference, so it reflects the tendency of all group members better than existing group recommendation methods. Through a comparative experiment, we prove that the proposed method has better performance than existing methods, and verify that it has high performance in groups with a large number of members as well as in small groups.

A Personalized Recommender based on Collaborative Filtering and Association Rule Mining

  • Kim Jae Kyeong;Suh Ji Hae;Cho Yoon Ho;Ahn Do Hyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.312-319
    • /
    • 2002
  • A recommendation system tracks past action of a group of users to make a recommendation to individual members of the group. The computer-mediated marking and commerce have grown rapidly nowadays so the concerns about various recommendation procedure are increasing. We introduce a recommendation methodology by which Korean department store suggests products and services to their customers. The suggested methodology is based on decision tree, product taxonomy, and association rule mining. Decision tree is to select target customers, who have high purchase possibility of recommended products. Product taxonomy and association rule mining are used to select proper products. The validity of our recommendation methodology is discussed with the analysis of a real Korean department store.

  • PDF

The relationship between prediction accuracy and pre-information in collaborative filtering system

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.803-811
    • /
    • 2010
  • This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.

The Effect of Consumer Evaluations of Size Recommendation Services Based on Body Information on Consumer Responses and the Moderating Effect of the Level of Information Search (신체정보 기반 사이즈 추천서비스에 대한 소비자 평가가 소비자 반응에 미치는 영향과 정보탐색정도의 조절효과)

  • Sangwoo Seo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.485-500
    • /
    • 2024
  • This study was conducted to examine the effects of consumer evaluations on size recommendation services based on body information on consumer responses and the moderating effect of the level of information search. To analyze the research model, a total of 200 data were collected from August 18 to 24, 2022, targeting consumers who had experience with using size recommendation services based on body information. As a result of the research model analysis, it was confirmed that the compatibility, reliability, and convenience of the size recommendation services based on body information influenced attitude, which, in turn, influenced usage intention. In addition, In the case of the group subject to a low level of information search, the path through which compatibility and reliability influenced attitude was significant, but that of convenience was not. In the group featuring a high level of information search, the path through which reliability and convenience influenced attitude was significant, but that of compatibility was not. This study is meaningful in that it expanded research related to size recommendation services to the field of consumer behavior.