International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.1
/
pp.45-52
/
2015
Although researchers have proposed various recommendation systems, most recommendation approaches are for single users and there are only a small number of recommendation approaches for groups. However, TV programs or movies are most often viewed by groups rather than by single users. Most recommendation approaches for groups assume that single users' profiles are known and that group profiles consist of the single users' profiles. However, because it is difficult to obtain group profiles, researchers have only used synthetic or limited datasets. In this paper, we report on various group recommendation approaches to a real large-scale dataset in a TV domain, and evaluate the various group recommendation approaches. In addition, we provide some guidelines for group recommendation systems, focusing on home group users in a TV domain.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.10
/
pp.2809-2821
/
2023
Effective recommendation of similar business groups is a critical factor in obtaining market information for companies. In this study, we propose a novel method for enhancing similar business group recommendation by incorporating derivative criteria and web crawling. We use employment announcements, employment incentives, and corporate vocational training information to derive additional criteria for similar business group selection. Web crawling is employed to collect data related to the derived criteria from 'credit jobs' and 'worknet' sites. We compare the efficiency of different datasets and machine learning methods, including XGBoost, LGBM, Adaboost, Linear Regression, K-NN, and SVM. The proposed model extracts derivatives that reflect the financial and scale characteristics of the company, which are then incorporated into a new set of recommendation criteria. Similar business groups are selected using a Euclidean distance-based model. Our experimental results show that the proposed method improves the accuracy of similar business group recommendation. Overall, this study demonstrates the potential of incorporating derivative criteria and web crawling to enhance similar business group recommendation and obtain market information more efficiently.
In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.
Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Woo-Ju;Kim, Je-Ran;Suh, Ji-Hae
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.192-197
/
2001
A recommendation system tracks past actions of a group of users to make a recommendation to individual members of the group. The computer-mediated marketing and commerce have grown rapidly nowadays so the concerns about various recommendation procedures are increasing. We introduce a recommendation methodology by which e-commerce sites suggest new products of services to their customers. The suggested methodology is based on web log analysis, product taxonomy, and association rule mining. A product recommendation system is developed based on our suggested methodology and applied to a Korean internet shopping mall. The validity of our recommendation system is discussed with the analysis of a real internet shopping mall case.
Proceedings of the Korea Inteligent Information System Society Conference
/
2006.06a
/
pp.344-353
/
2006
Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.
Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.
Group recommendation analyzes the characteristics and tendency of a group rather than an individual and provides relevant information for the members of the group. Existing group recommendation methods merely consider the average and frequency of a preference. However, if the users' preferences have large deviations, it is difficult to provide satisfactory results for all users in the group, although the average and frequency values are high. To solve these problems, we propose a method that considers not only the average of a preference but also the deviation. The proposed method provides recommendations with high average values and low deviations for the preference, so it reflects the tendency of all group members better than existing group recommendation methods. Through a comparative experiment, we prove that the proposed method has better performance than existing methods, and verify that it has high performance in groups with a large number of members as well as in small groups.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.312-319
/
2002
A recommendation system tracks past action of a group of users to make a recommendation to individual members of the group. The computer-mediated marking and commerce have grown rapidly nowadays so the concerns about various recommendation procedure are increasing. We introduce a recommendation methodology by which Korean department store suggests products and services to their customers. The suggested methodology is based on decision tree, product taxonomy, and association rule mining. Decision tree is to select target customers, who have high purchase possibility of recommended products. Product taxonomy and association rule mining are used to select proper products. The validity of our recommendation methodology is discussed with the analysis of a real Korean department store.
Journal of the Korean Data and Information Science Society
/
v.21
no.4
/
pp.803-811
/
2010
This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.
Journal of the Korean Society of Clothing and Textiles
/
v.48
no.3
/
pp.485-500
/
2024
This study was conducted to examine the effects of consumer evaluations on size recommendation services based on body information on consumer responses and the moderating effect of the level of information search. To analyze the research model, a total of 200 data were collected from August 18 to 24, 2022, targeting consumers who had experience with using size recommendation services based on body information. As a result of the research model analysis, it was confirmed that the compatibility, reliability, and convenience of the size recommendation services based on body information influenced attitude, which, in turn, influenced usage intention. In addition, In the case of the group subject to a low level of information search, the path through which compatibility and reliability influenced attitude was significant, but that of convenience was not. In the group featuring a high level of information search, the path through which reliability and convenience influenced attitude was significant, but that of compatibility was not. This study is meaningful in that it expanded research related to size recommendation services to the field of consumer behavior.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.