• Title/Summary/Keyword: Groundwaters

Search Result 151, Processing Time 0.024 seconds

Study on Gross-alpha Characteristics of Groundwater for Drinking in Korea (국내 음용지하수중 전알파 특성 연구)

  • Jeong, Do-Hwan;Lee, Young-Joon;Ju, Byoung-Kyu;Noh, Hoe-Jung;Yu, Soon-Ju;Kim, Moon-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.67-73
    • /
    • 2011
  • Groundwaters were sampled from 730 wells being used for drinking purposes during 2007-2009. These samples were analysed using a gas-flow type GPC (Gas Proportional Counter) according to the USEPA method (900.0). We obtained a gross-alpha counting TDS (total dissolved solid) efficiency curve (Y = 0.0017X2 - 0.3122X + 19.165, X = TDS, Y = efficiency, $R^2$ = 0.9734) using natural uranium standard to get gross ${\alpha}$ value of the samples. The gross alpha values ranged from MDA (minimum detectable activity) to 14.88 pCi/L and 429 samples showed values higher than MDA (< 0.9 pCi/L). Correlations of the uranium values with the total alpha values and the gross-alpha values indicate that uranium values have high impacts on gross-alpha values. Groundwater samples of study areas were classified into four regions according to the rock types; plutonic (granite) rock region (427 areas), metamorphic rock region (181 aeras), sedimentary rock region (70 areas), volcanic rock region (52 areas). Groundwater of Cretaceous granite presented the highest gross-alpha value. Gross alpha in groundwaters showed no relationship with uranium in terms of the geological ages, rocks and minerals.

A Preliminary Investigation of Radon Concentrations in Groundwater of South Korea (국내 지하수의 라돈 함량 예비조사)

  • Cho, Byong-Wook;Sung, Ig-Hwan;Cho, Soo-Young;Park, Sun-Ku
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.98-104
    • /
    • 2007
  • A survey was performed to evaluate the distribution of radon concentrations in groundwater of South Korea. Groundwaters of 615 wells were sampled for this study during the four years from 1999 to 2002. The results showed radon values ranging from 4 pCi/L to 40,010 pCi/L with a mean and a median of 1,862 pCi/L and 920 pCi/L, respectively. The samples were classified into five groups according to the rock types; granite, sedimentary rocks, metamorphic rocks, Ogcheon metamorphic rocks, and Cheju volcanics. Mean radon concentrations were highest (2,595 pCi/L) in granites and lowest (238 pCi/L) in Cheju volcanic rocks. The groundwaters generally showed the highest radon content (2,298 pCi/L) in the weathered and the fractured bedrock complex and the lowest level (672 pCi/L) in the alluvium. The results showed that the radon concentrations in South Korea are low relative to those reported from other countries. But further investigations are suggested to confirm our results.

A Study of Soil and Water Pollutions in Kyungsan Province (경산지역 토양 및 수질오염에 관한 연구)

  • 김용태;이부용;김동석;양소영;이동훈;박병윤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.713-720
    • /
    • 2002
  • In order to provide the basic information on the environmental pollution of Kyungsan province, the contents of Pb, Cd, Cr, Cu, Mn and Zn in soil, stream water, aquatic sediment and groundwater were investigated, and also the values of pH, COD, $KMnO_4-C$,\;NH_3-N,\;NO_2-N,\;NO_3-N$ and $Cl^-$ of stream water and groundwater were determined. The results were as follows. The values of COD, $NH_3-N,\;NO_2-N$ and $NO_3-N$ of the stream waters were very low. The contents of Pb, Cd, Cr, Cu and Zn in the stream waters were respectively at range of $0.014~0.063 mg/{\ell},\;0.004~0.007 mg/{\ell$\mid$, 0~0.045 mg/{\ell},\;0~0.008 mg/{\ell}$\;and\;$0.001~0.175 mg/{\ell}$, and these values were much lower than those of contaminated stream water in Korea. The contents of Cd, Cr, Cu and Zn in the soils were respectively at range of 0.12~O.71 ppm, 0.88~2.65 ppm, 2.86~22.33 ppm and 3.89~26.39 ppm, and these values were much lower than those of ordinary polluted areas in Korea. The contents of Cd, Cr, Cu, As, Zn and Mn in the aquatic sediments were respectively at range of 3.05~3.81 ppm, 14.6~70.6 ppm, 13.74~61.59 ppm, 76.8~465.5 ppm, 12.56~190.83 ppm and 333.3~l188.3 ppm. The values of pH, $KMnO_4-C,\;NH_3-N$, and $NO_3-N$ of the groundwaters were respectively at range of 7.6~8.4, $0~3.95{\ell}$, 0.05~0.15 mg/{\ell}$ and 0.05~0.42 $mg/{\ell}$. The contents of Pb, Cd and Cr in the groundwaters were respectively at range of 0.015~0.061 $mg/{\ell}$, 0.O06~0.009 $mg/{\ell}$ and 0.005~0.045 $mg/{\ell}$.

A Study on the Characteristics of Groundwaters in Gyeongsan City (경산시 지하수의 수질특성에 관한 연구)

  • Song, Sung-Sook;Park, Byoung-Yoon;Lee, Bu-Yong
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2007
  • This study was performed to provide the basic information on characteristics of groundwater pollution in Gyeongsan city. Forty two groundwater samples were collected, and pH, DO, COD, $NH_3-N,\;NO_3^--N$, T-N, $PO_4^{3-}-P$, Cl, Ca, Mg, hardness, evaporate residues and others were investigated. And, ANOVA analyses were carried out to reveal the differences in water pollution indicator values of by industry, commerce/residence and agriculture areas. The results were as follows. 1. The mean values of pH, DO, COD, $NH_3-N,\;NO_3^--N$, T-N, $PO_4^{3-}-P$, Cl, evaporate residues, Ca and hardness were 6.9, $7.9mg/\ell,\;0.4mg/\ell,\;2.44mg/\ell,\;2.73mg/\ell,\;6.06mg/\ell,\;0.82mg/\ell,\;32.72mg/\ell,\;381.67mg/\ell,\;41.53mg/\ell,\;177.17mg/\ell$, respectively. 2. As groundwater became deeper, the values of Cl, Ca, Mg, Na, hardness and evaporate residues remarkably increased, but those of COD, $NH_3^--N,\;NO_3^--N,\;NO_2^-N$, T-N decreased. 3. The values of COD, Cl, Ca, Mg, Na, hardness and evaporate residues were very high in industrial area, and those of $NH_3-N,\;NO_2^--N$, T-N were very high in commercial/residential area, and those of $NO_3^--N$ were a little high in agricultural area. 4. The correlations between depth and each value of Mg, Na, Fe, hardness and evaporate residues were highly positive, and those between DO and each value of Mg, Cu, Fe, hardness and evaporate residues were highly negative. 5. According to ANOVA analyses, the differences in three area groups (industry, commerce/residence and agriculture) on the values of $NH_3-N$, T-N, evaporate residues, hardness, Ca, Mg, K and Fe were significant at 1% level.

Study on Spatial Characteristics of Physicochemical Components of Spring Water in Mts. Geumjeong and Baekyang Area Using Kriging (크리깅 기법을 이용한 금정산-백양산 일대 용천수의 물리화학적 성분의 공간적 분포 특성 연구)

  • 함세영;정재열;류상민;강래수
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.439-457
    • /
    • 2002
  • Sping waters at 60 sites and groundwaters at 6 wells in Mts. Geumjeong and Baekyang area were investigated for measuring nine physicochemical components (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity and discharge rate). The pH of spring waters ranges from 5.06 to 8.38, alkalinity from 7.93 to 102.21 mg/ㅣ, electrical conductance from 9.5 to $270{\;}\mu\textrm{s}/cm$, Eh from 64.2 to 685.9 mV, DO from 4.57 to 12.13 mg/l, and the discharge rate from 4.26 to 182.2 ml/s. General statistics was carried out to analyze statistical characteristics of those components. To compare the components with one another, regression analyses were carried out. And the components of spring waters were compared to those of groundwaters. Kriging was used to estimate the spatial variation of DO, pH, Eh, EC, alkalinity and discharge rate in the study area. The kriged isopleth maps were made using normalized kriged values to find anomalies of the physicochemical components and to compare anomalies of different components.

Natural Reduction Characteristics of Radon in Drinking Groundwater (음용 지하수 중 라돈 자연저감 특성)

  • Noh, Hoe-Jung;Jeong, Do-Hwan;Yoon, Jeong-Ki;Kim, Moon-Su;Ju, Byoung-Kyu;Jeon, Sang-Ho;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • To investigate the natural reduction characteristics of radon with a short half-life (3.82 day) in drinking Qgroundwater, we analyzed the changes of radon concentrations of groundwater, waters in storage tanks, and tap waters from the small-scale groundwater-supply systems (N = 301) by LSC (Liquid Scintillation Counter). We also analyzed the concentrations of uranium (half-life 4.5 billion years) in the waters by ICP/MS to compare with natural reduction of radon concentration. The radon concentrations of 68 groundwater-supply systems occupying 22.6% of the total samples exceeded the US EPA's Alternative Maximum Contaminant Level (AMCL : 4,000 pCi/L), with the average radon concentration of 7,316 pCi/L (groundwaters), 3,833 pCi/L (tank waters) and 3,407 pCi/L (tap waters). Compared to the radon levels of pumped groundwaters, those of tank and tap waters naturally reduced significantly down to about 50%. Especially, in case of 29 groundwater-supply systems with the groundwater radon concentrations of 4,000~6,000 pCi/L, average radon concentrations of the tank and tap waters naturally decreased down to the AMCL. Therefore this study implies that radon concentrations of drinking groundwater can be effectively reduced by sufficient storage and residence in tanks.

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

Hydrogeochemical Evolution Related to High Fluoride Concentrations in Deep Bedrock Groundwaters, Korea (국내 심부 암반지하수에서의 고농도 불소 산출과 관련된 수리지구화학 진화)

  • Kim Kyoung-Ho;Yun Seong-Taek;Chae Gi-Tak;Kim Seong-Yong;Kwon Jang-Soon;Koh Yong-Kwon
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.27-38
    • /
    • 2006
  • To understand the geologic and hydrogeochemical controls on the occurrence of high fluoride concentrations in bedrock groundwaters of South Korea, we examined a total of 367 hydrochemistry data obtained from deep groundwater wells (avg. depth=600 m) that were drilled fur exploitation of hot springs. The fluoride concentrations were generally very high (avg. 5.65mg/L) and exceeded the Drinking Water Standard (1.5 mg/L) in $72\%$ of the samples. A significant geologic control of fluoride concentrations was observed: the highest concentrations occur in the areas of granitoids and granitic gneiss, while the lowest concentrations in the areas of volcanic and sedimentary rocks. In relation to the hydrochemical facies, alkaline $Na-HCO_3$ type waters had remarkably higher F concentrations than circum-neutral to slightly alkaline $Ca-HCO_3$ type waters. The prolonged water-rock interaction occurring during the deep circulation of groundwater in the areas of granitoids and granitic gneiss is considered most important for the generation of high F concentrations. Under such condition, fluoride-rich groundwaters are likely formed through hydrogeochemical processes consisting of the removal of Ca from groundwater via calcite precipitation and/or cation exchange and the successive dissolution of plagioclase and F-bearing hydroxyl minerals (esp. biotite). Thus, groundwaters with high pH and very high Na/Ca ratio within granitoids and granitic gneiss are likely most vulnerable to the water supply problem related to enriched fluorine.

Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area (횡성지역 다양한 지질환경에서 지하수 중 우라늄 및 라돈-222 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yu Jin;Lee, Yong Cheon;Choi, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.557-576
    • /
    • 2015
  • Groundwaters in granite, gneiss, and two-mica granite formations, including faults, in the Hoengseong area are examined to determine the relationship between their uranium and radon-222 contents and rock types. The chemical compositions of 38 groundwater samples and four surface water samples collected in the study area were analyzed. Sixteen of the samples showing high uranium and radon-222 contents were repeatedly analyzed. Surface radioactivities were measured at 30 points. The uranium and radon-222 concentrations in the groundwater samples were in the ranges of 0.02-49.3 μg/L and 20-906 Bq/L, respectively. Four samples for uranium and 35 samples for radon had concentrations exceeding the alternative maximum contaminant level of the US EPA. The chemical compositions of groundwaters indicated Ca(Na)-HCO3 and Ca(Na)-NO3(HCO3+Cl) types. The pH values ranged from 5.71 to 8.66. High uranium and radon-222 contents in the groundwaters occurred mainly at the boundary between granite and gneiss, and in the granite area. The occurrence of uranium did not show any distinct relationship to that of radon-222. The radon-222, an inert gas, appeared to be dissolved in the groundwater of the aquifer after wide diffusion along rock fractures, having been derived from the decay of uranium in underground rocks. The results in this study indicate that groundwater of neutral or weakly alkaline pH, under oxidizing conditions and with a high bicarbonate content is favorable for the dissolution of uranium and uranium complexes such as uranyl or uranyl-carbonate.

Characteristics of Groundwater, Sewage Water and Stream Water Contamination Based on VOCs Concentration Around Ulsan, Korea (울산지역 지하수, 하수 및 하천수의 VOCs 오염특성)

  • Cho, Byong-Wook;Yun, Uk;Im, Hyun-Chul;Sung, Ig-Hwan;Jang, Woo-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • To investigate the characteristics of the volatile organic compounds (VOCs) concentration in the groundwater around Ulsan, Korea, 168 groundwaters, 12 stream waters, and 6 sewage waters were analyzed for 61 VOCs. Results showed that VOCs were not detected in stream waters and total VOCs concentration in 5 sewage waters was in the range of ND-22.3 ${\mu}$g/L. In 78 groundwater samples more than one VOCs were detected and VOCs concentration of the samples ranged from 0.1 ${\mu}$g/L to 387.1 ${\mu}$g/L. However, VOCs concentration of 66 samples out of 78 samples showed less than 10 ${\mu}$g/L and that of only 6 samples exceeded Korea drinking water limit (KDWL). 42 VOCs detected from the 168 groundwaters were 14 aromatic hydrocarbons out of 25, 27 chlorinated aliphatic hydrocarbons out of 35, and methyl tert-butyl ether (MTBE). Detection rate of each VOCs in the groundwaters was as follows: chloroform in 43 samples (25.6%), methylene chloride in 36 samples (21.4%), TCE in 26 samples (15.5%), 1,1-dichloroethane in 19 samples (1.3%), PCE in 16 samples (9.5%), cis-1,2-DCE in 15 samples (8.9%), and toluene in 14 samples (8.3%). Even though VOCs concentration in the groundwaters of the study area is still low, the city is expanding and the drinking water limit is becoming strict, and therefore continuous monitoring is necessary.