Browse > Article

Hydrogeochemical Evolution Related to High Fluoride Concentrations in Deep Bedrock Groundwaters, Korea  

Kim Kyoung-Ho (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University)
Yun Seong-Taek (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University)
Chae Gi-Tak (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University)
Kim Seong-Yong (Korea Institute of Geoscience and Mineral Resources)
Kwon Jang-Soon (Department of Earth and Environmental Sciences and the Environmental Geosphere Research Lab(EGRL), Korea University)
Koh Yong-Kwon (Korea Atomic Energy Research Institute)
Publication Information
Economic and Environmental Geology / v.39, no.1, 2006 , pp. 27-38 More about this Journal
Abstract
To understand the geologic and hydrogeochemical controls on the occurrence of high fluoride concentrations in bedrock groundwaters of South Korea, we examined a total of 367 hydrochemistry data obtained from deep groundwater wells (avg. depth=600 m) that were drilled fur exploitation of hot springs. The fluoride concentrations were generally very high (avg. 5.65mg/L) and exceeded the Drinking Water Standard (1.5 mg/L) in $72\%$ of the samples. A significant geologic control of fluoride concentrations was observed: the highest concentrations occur in the areas of granitoids and granitic gneiss, while the lowest concentrations in the areas of volcanic and sedimentary rocks. In relation to the hydrochemical facies, alkaline $Na-HCO_3$ type waters had remarkably higher F concentrations than circum-neutral to slightly alkaline $Ca-HCO_3$ type waters. The prolonged water-rock interaction occurring during the deep circulation of groundwater in the areas of granitoids and granitic gneiss is considered most important for the generation of high F concentrations. Under such condition, fluoride-rich groundwaters are likely formed through hydrogeochemical processes consisting of the removal of Ca from groundwater via calcite precipitation and/or cation exchange and the successive dissolution of plagioclase and F-bearing hydroxyl minerals (esp. biotite). Thus, groundwaters with high pH and very high Na/Ca ratio within granitoids and granitic gneiss are likely most vulnerable to the water supply problem related to enriched fluorine.
Keywords
fluoride; deep bedrock groundwater; hydrogechernical evolution; water-rock interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김건영, 고용권, 김천수, 배대석, 박맹언 (2000) 유성지역 지하수의 지구화학적 특성 연구. 지하수환경학회지, 7 권, p. 32-46
2 염병우, 김용제 (1999) 수안보 지역의 온천수위 변동과 수 리지구화학에 관한 연구. 지하수환경학회지, 6권, p. 59-65
3 윤성택,채기탁,고용권,김상렬,최병영,이병호,김성용 (1998) 풍기 지역 지하수의 수리지구화학 및 환경동위 원소 특성 연구. 지하수환경, 5권, p. 177-191
4 정기영, 김강주, 김종용, 박재형, 이도형, 박순길 (2003) 포항경주지역 양산단층대 주변의 고불소 지하수 산출 특성. 지질학회지, 39권, p. 371-384
5 Handa, B. K (1975) Geochemistry and genesis of fluoride containing groundwaters in India. Ground Water, v. 13(3), p. 275-281   DOI
6 Manahan, S. E. (1994) Environmental Chemistry, 6th ed., Lewis Publishers, Florida, USA, 811p
7 Rankama, K and Sahama, Th. G. (1950) Geochemistry, The University of Chicago press, Chicago, Illinois, USA, 912p
8 Chough, S.K. , Kwon, S,T,.Ree,J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, v. 52, p. 175-235   DOI   ScienceOn
9 Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. Jour. Sci., v. 267, p. 279-804
10 김규한, 최현정 (1998) 남한의 온천지역의 열수와 지하수 의 지구화학적 연구. 한국지구과학회지, 19권, p. 22-34
11 Gizaw, B. (1996) The origin of high bicarbonate and fluoride concentration in waters of the Main Ethiopian Rift Valley, East African Rift system. J Afr. Earth Sci., v. 22, p. 391-402   DOI   ScienceOn
12 Parkhurst, D. L. and Appelo, C. A. J (1999) User's guide to phreeqc (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigation Report 994259, Denver; Colorado, 312p
13 Evans, Jr., H. T. (1995) Ionic radii in crystals. CRC Handbook of Chemistry and Physics, 75th ed., p. 1913-1995
14 Brownslow, A. H. (1996). Geochemistry, Prentice Hall, New Jersey; 580p
15 Correns, C. W. (1956) The geochemistry of the halogens, In Ahrens, Pergamon Press, p. 181-233
16 Koritnig, S. (1972) Handbook of Geochemistry (v. II/I). Berlin, Springer-Verlag, 9B-90
17 염병우 (1993) 화강암 내에 부존히는 지열수에 대한 환경 수리화학적 연구: 포천, 고성, 예산 및 중원지역을 중 심으로. 서울대학교 대학원 박사학위논문, 251p
18 Gascoyne, M. and Kamineni, D.C. (1994) The hydrogeochemistry of fractured plutonic rocks in the Canadian Shield. Appl. Hydrogeol., v. 2, p. 43-49   DOI
19 Cabrera, A., Blarasin, M. and Villalba, G. (2001) Groundwater contaminated with arsenic and fluoride in the Argentine pampean Plain.J. Environ. Hydrol., v. 9, p. 9
20 Turekian, K K and Wedepohl, K H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., v. 71(2), p. 175-191
21 Nordstrom, D. K, Ball, J w., Donahoe, R. J and Whittemore, D. (1989) Groundwater chemistry and waterrock interaction at Stripa. Geochim. Cosmochim. Acta, v. 53, p. 1727-1740   DOI   ScienceOn
22 Choi, H. S., Koh, Y. K., Bae, D. S., Park , S. S., Hutcheon I, Yun, S. T. (2005) Estimation of deep reservoir temperature of C$O_{2}$ rich springs in Kangwon district, South Korea.Jour. Volcano!. Geotherm. Res., v. 141, p
23 Adriano, D. C. (1986) Trace Elements in the Terrestrial Evironments. Springer-Verlag, New York, 553p
24 Frengstad, B., Banks, D. and Siewers, U. (2001) The chemistry of Norwegian groundwaters: IV: The dependence of element concentrations in crystalline bedrock groundwaters. Sci. Total Environ., v. 277, p. 101-117   DOI   ScienceOn
25 Kanisiwa, S. (1979) Content and behavior of fluorine in granitic rocks, Kitakami Mounations, Northest Japan. Chern. Geol., v. 24, p. 57-67   DOI   ScienceOn
26 Carrillo-Rivera, J. J., Cardona, A. and Edmunds, W. M. (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico. Jour. Hydrol., v. 261, p. 24-47   DOI   ScienceOn
27 Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2005b) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Jour. Hydrol., in press (doi:10.1016/j.jhydrol.2005.08. 006)
28 황정 (2001) 금주완주 지역 형석광화대내 석회암 및 화 강암 지역 지하수의 불소 분포특성 및 저감방안. 차원 환경지질, 34권, p. 105-117
29 Chae, G. T., Yun, S. T, Kwon, M.J., Kim, Y. S. and Berne hard, M. (2005a) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem. Jour., in press
30 Hopkins, D. M. (1977) An improved ion-selective electrode method for the rapid determination of fluorine in rocks and soils. US Geol. Surv. Jour. Res., 5(5), p. 589-593
31 Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K S., Heo, C. H., Lee, S. K (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Jour. Hydrol., v. 313, p. 182-194   DOI   ScienceOn
32 Pertti, L. and Birgitta, B. (1995) The occurrence and geochemistry of fluorides with special reference to natural waters in Finland. Geo!. Surv. Finland, Report of Investigation 128
33 황정 (2002) 황강리 형석 광화대내 석회암 및 화강함 지역 지하수의 지구화학적 특성. 한국지구과학회지, 23권, p. 486-493
34 WHO(World Health Organization) (1994) Fluorides and oral health. World Health Organization Technical Report Series 846, Geneva
35 Kim, K and Jeong, G. Y. (2005) Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemosphere, v. 58, p. 1399-1408   DOI   ScienceOn
36 Choi, H. S. (2002) Hydrogeochemical and environmental isotope studies of C$O_{2}$-rich groundwaters in the Kangwon Province, Korea: Water-rock interaction, origin and evolution. Unpub. Ph. D. Thesis, Korea Univ., Seoul, 208 p77-89
37 Lahermo, P., Ilmasti, M., Juntunen, R. and Taka, M. (1990) The hydrogeochemical mapping of Finnish groundwaters. The Geochemical Atlas of Finland, Part 1, Geol. Surv. Finland, 66p
38 Apambire, W. B., Boyle, D. R. and Michel, E A. (1997) Geochemistry, genesis and health implication of fluoriferous groundwater in the upper regions. Ghana. Environ. Geol, v. 33, p. 13-24   DOI
39 Banks, D., Reimann, C., Royset, O., Skarphagen, H. and S, ether, O. M. (1995) Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters. Appl. Geochem., v. 10, p. 1-16   DOI   ScienceOn
40 Dowgiallo, J. (2000) Thermal water prospecting results at Jelenia Go'ra-Cieplice (Sudetes, Poland) versus geothermometric forecasts. Environ. Geol., v. 39, p. 433-436   DOI
41 Li, Z., Tainosho, Y., Shiraishi, K, Owada, M. (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the S$\phi$r Rondane Mountains, East Antarctica. Geochem. J, v. 37, p. 145-161