• Title/Summary/Keyword: Groundwater salinization

Search Result 10, Processing Time 0.026 seconds

Study on The Salinization in Groundwater of the Eastern Area of Cheju Island (제주도 동부지역 지하수의 염수화에 관한 연구)

  • 김지영;오윤근;류성필
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2001
  • According to the results of the groundwater quality investigation about 230 holes all over the country, the groundwater which was in excess of standard grows larger every year and closed holes increased to 23,457 holes in 1997 from 15,724 holes in 1996. This is the major reasons that water quality contamination, shortage of water quantity, increasing of salinity and so on. There are 7 groundwater salinization sources which are condisered as most important on a regional level. And among theses the Cheju Island groundwater salinization sources are (1) halite solution, (2) natural saline groundwater, (3) sea-water intrusion. The method of taking an isotopes is one of research methods of the origin of groundwater salinization and is used in so many studies because it has very high confidence. $^{18O}O, ^2H, ^3H, ^{14}C$ and so on in an isotopes are frequently used in the method of them. Consequently on this study we analyzed major ions and $^3H$ in groundwater, sea-water and rain of the eastern part of cheju island known as contaminated site from long time ago to examine the origin of groundwater salinization. Relation ratios of the major ions versus chloride ion shows similar tendency to sea-water. This indicates that sea-water entered the groundwater layer. And amount of $^3H$ in holes of the land side is higher than of the sea side. Relation of chloride ion versus $^3$H indicates negative character. Therefore we can think that the reason of groundwater salinization of this part is natural saline groundwater and halite solution by relation.

  • PDF

Prediction of the Salinization in Reclaimed Land by Soil and Groundwater Characteristics

  • Jeon, Jihun;Kim, Donggeun;Kim, Taejin;Kim, Keesung;Jung, Hosup;Son, Younghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.131-140
    • /
    • 2021
  • It is becoming more important to utilize reclaimed lands in South Korea, due to the increasing competition for its usage among different sectors. However, the high groundwater level and poor permeability are exposing them to deterioration by salinization. Salinization is difficult to predict because the pattern changes according to various characteristics of soil and groundwater. In this study, the capillary rising time was studied by the water content profile in the soil. The prediction equation of soil salinity was developed based on simulation result of the CHEMFLO model. to enable prediction considering various soil water content and groundwater level. The two terms constituting the equation showed the coefficients of determination of 0.9816 and 0.9824, respectively. Using the prediction equation of the study, the surface salinity can be easily predicted from the initial surface salinity and the salinity of the groundwater. In the future, more precise predictions will be possible with the results of studies on the hydraulic characteristics of various reclaimed soils, changes in water content profile by seasonal and climate events.

Physicochemical Characteristics of Groundwater Salinization in the eastern aea of Cheju Island (제주도 동부지역 지하수의 염수화와 이화학적 특성)

  • Oh, Youn-Keun;Kim, Kyung-Hoo;Ryu, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2000
  • The purpose of this study is to investigate the physicochemical characteristics of salinization of groundwater at the estern area of Cheju island. For this purpose, the major ions of groundwater, spring water are analyzed. The concentration of $Cl^-$ and Na^++K^+$/ contained in the groundwater at near the coastline are higher than those at inland area away from the coastline. The water quality components of groundwater observed at this area can be classified into 4 types such as Na-Cl, $HCO_3, Na-Cl-HCO_3$ and Ca-HCO$_3$. The concentration ratio of $SO_4^1 to Cl^- is 0.1354(R^2=0.972)$ at this area. This value is very similar with Dittomer's ratio of 0.13. For Na^+, K^+, and Mg^{2+}/ versus Cl^-$, their ratios also show a significant relationship between sea water and groundwater in this area. From the chloride-bicarbonate ratio, it can be estimated that the intrusion distance of seawater from coastline to inland area is 2.8km at Onpyung-Nansan, Sangdo and Pyungdae areas, and 5.4km at Kosung-Susan area. The mixing ratio between seawater and fresh water by the intrusion of seawater is decreased with the distance toward inland from coastline. This ratio(fresh water : seawater) is 80:20 in spring water adjacent the coastlines, Onpyung area and 99.8:0.2 in the well at No.3 of Susan located at inland away from the coastline. The concentration of $Na^+$ observed at field is 25~45% lower than that theoretically calculated by this mixing ratio. Based on the data of EC, the equipotential line of 500$\mu$mhos/cm is located at 4~5km poing at Kosung-Susan area and 2.5km point at the other area. The equation of correlation between $Cl^-$ concentration and EC values is $Cl^-$=0.1927EC-16.683 for the area lower than 500 $\mu$mhos/cm and $Cl^-$=0.2773EC for the area beyond 500 $\mu$mhos/cm.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion (해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의)

  • Park, Hwa-Seok;Kihm, Jung-Hwi;Yum, Byoung-Woo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.8-21
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a hydrodynamic dispersion numerical model is performed to analyze quantitatively impacts of layered heterogeneity of geologic media and groundwater pumping schemes on groundwater flow and salt transport in coastal aquifer systems. A two-layer heterogeneous coastal aquifer system composed of a lower sand layer (aquifer) and an upper clay layer (aquitard) and a corresponding single-layer homogeneous coastal aquifer system composed of an equivalent lumped material are simulated to evaluate impacts of layered heterogeneity on seawater intrusion. In addition, a continuous groundwater pumping scheme and two different periodical groundwater pumping schemes, which withdraw the same amount of groundwater during the total simulation time, are applied to the above two coastal aquifer systems to evaluate impacts of groundwater pumping schemes on seawater intrusion. The results of the numerical simulations show that the periodical groundwater pumping schemes have more significant adverse influences on groundwater flow and salt transport not only in the lower sand layer but also in the upper clay layer, and groundwater salinization becomes more intensified spatially and temporally as the pumping intensity is higher under the periodical groundwater pumping schemes. These imply that the continuous groundwater pumping scheme may be more suitable to minimize groundwater salinization due to seawater intrusion. The results of the numerical simulations also show that groundwater salinization in the upper clay layer occurs significantly different from that in the lower sand layer under the periodical groundwater pumping schemes. Such differences in groundwater salinization between the two adjacent layers may result from layered heterogeneity of the layered coastal aquifer system.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers (서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구)

  • 박세창;윤성택;채기탁;이상규
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

다변량 통계 분석 및 질량 균형법을 이용한 제주도 지하수의 수질 요소 분리

  • 고동찬;고경석;김용제;이승구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.450-452
    • /
    • 2004
  • Using factor analysis and bivariate comparisons of major components in ground water, three geochemical processes were identified as controlling factors of ground water chemistry; 1) natural mineralization by water rock interactions, 2) effect of seawater which includes salinization by seawater near seashores and deposition of sea salt, and 3) nitrate contamination by N fertilization. Contribution of rainfall was also estimated from the measured composition of wet deposition. The geochemical processes were separated using total alkalinity as an indicator for natural mineralization, Cl for effect of seawater, and nitrate for N fertilization. Relatively high correlation of major components with nitrate suggests that nitrification of nitrogenous fertilizers significantly affects ground water chemistry. Total cations derived from nitrate sources have good linearity for nitrate in equivalent basis with a slope of 1.8, which is a mean of proton production coefficients in nitrification of two major compounds in nitrogenous fertilizers, ammonium and urea. Contribution of nitrate sources to base cations, Cl, and SO$_4$ in ground water was determined considering maximum contribution of natural mineralization to estimate a threshold of the effect of N fertilization for ground water chemistry, which shows W fertilization has a greatest effect than any other processes in ground water with nitrate concentration greater than 50 mg/L for Ca, Mg, Na and with concentration greater than 30 mg/L for Cl and SO$_4$.

  • PDF

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary (섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화)

  • Lee, Seul-Bi;Hong, Chang-Oh;Oh, Ju-Hwan;Gutierrez, Jessie;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2008
  • The causes of salt accumulation in soils of plastic film houses nearby Sumjin river estuary in Mokdo-ri($127^{\circ}46'E\;35^{\circ}1'N$), Hadong, Gyeongnam, Korea were investigated in 2006. With chemical properties soils and water analyzed and fertilization status monitored, the study showed that mean salt concentration of soil was much higher at EC $4.3\;dS\;m^{-1}$ than the Korean average (EC $2.9\;dS\;m^{-1}$) in 2000s for plastic film house's soil with exchangeable Na $0.8\;cmol^+\;kg^{-1}$ and water-soluble Cl $232\;mg\;kg^{-1}$, and then might result to salt damage in sensitive crop plants. Salt concentration of ground water used as main irrigation water source contained very high EC with corresponding value of $2.6\;dS\;m^{-1}$. Particularly, increase of EC value was directly proportional with the increased pumping of ground water used as a water-covering system in order to protect the temperature inside plastic film houses from the early winter season. High Na and Cl portion of ions in water might had contributed to the specific ion damage in the crops. Secondly, heavy inputs of chemicals and composts significantly increased the accumulated salts in soil. Conclusively, salt accumulation might had been accelerated by use of salted-groundwater irrigation and heavy fertilization rate. To minimize this problem, ensuring good quality of irrigation water is essential as well as reducing fertilization level.