• 제목/요약/키워드: Groundwater recharge

검색결과 370건 처리시간 0.035초

보수적 지하수 개발가능량 산정 방안 (A Method of Estimating Conservative Potential Amount of Groundwater)

  • 정일문;김남원;이정우;이정은
    • 대한토목학회논문집
    • /
    • 제34권6호
    • /
    • pp.1797-1806
    • /
    • 2014
  • 지금까지 세계적으로 지하수 관리는 연간 지하수 함양량을 기반으로 한 안전채수량 정책에 의해 수행되어 왔다. 그러나 지하수 함양량은 시공간적으로 변동하므로 지속가능한 지하수자원을 평가하기 위해서는 동적 해석이 필요하다. 본 연구에서는 지표수-지하수 통합해석 모형인 SWAT-MODFLOW를 이용하여 경주지역의 지하수 함양량 공간분포를 산정하였다. 우리나라에서는 10년 빈도 갈수시 강수량에 함양계수를 곱하여 지역별 개발가능량을 산정하기에 본 연구에서는 기존 개발가능량을 평가하기 위해 빈도해석기법을 이용하였다. 소유역별 10년 빈도 갈수시의 지하수 함양량을 추정하는 보수적 방법을 제안하고 이를 기존 개발가능량과 비교하였다. 이같은 계산 절차를 통해 지하수 개발가능량을 산정하는 기존 절차의 한계를 합리적으로 제시할 수 있었다.

금정산지역의 수위변동 자료를 이용한 시계열 및 지하수 함양량 분석 (Time Series and Groundwater Recharge Analyses Using Water Fluctuation Data in Mountain Geumjeong Area)

  • 김태원;함세영;정재열;류상민;이정환;손건태;김남훈
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.257-267
    • /
    • 2008
  • Groundwater recharge characteristics in a fractured granite area, Mt. Geumjeong, Korea. was interpreted using bedrock groundwater and wet-land water data. Time series analysis using autocorreclation, cross-correlation and spectral density was conducted for characterizing water level variation and recharge rate in low water and high water seasons. Autocorrelation analysis using water levels resulted in short delay time with weak linearity and memory. Cross-correlation function from cross-correlation analysis was lower in the low water season than the high water season for the bedrock groundwater. The result of water level decline analysis identified groundwater recharge rate of about 11% in the study area.

제주도 표선유역의 물수지 평가를 위한 지하수 유동 모델링 (Groundwater Modeling for Estimating Water Balance over Pyosun Watershed in Jeju Island)

  • 송성호;이규상;안중기;전선금;이명재
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.495-504
    • /
    • 2015
  • To estimate water balance of Pyosun watershed in Jeju Island, a three-dimensional finite difference model MODFLOW was applied. Moreover, the accuracy of groundwater flow modeling was evaluated through the comparison of the recharge rate by flow modeling and the existing one from water balance model. The modeling result under the steady-state condition indicates that groundwater flow direction was from Mt. Halla to the South Sea and groundwater gradient was gradually lowered depending on the elevation. Annual recharge rate by the groundwater flow modeling in Pyosun watershed was calculated to 236 million $m^3/year$ and it was found to be very low as compared to the recharge rate 238 million $m^3/year$ by the existing water balance model. Therefore, groundwater flow modeling turned out to be useful to estimate the recharge rate in Pyosun watershed and it would be available to make groundwater management policy for watershed in the future.

물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정 (Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method)

  • 송성호;이규상;명우호;안중기;백진희;정차연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권2호
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

도농복합지역 지하수 함양과 배출에 대한 연구 (Groundwater Recharge and Discharge in the Urban-rural Composite Area)

  • 이병선;홍성우;강희준;이지성;윤성택;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권2호
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.

Evaluation of Groundwater Flow Analysis Using Rainfall-Recharge Estimation Methods

  • Choi, Yun-Yeong;Sim, Chang-Seok;Bae, Sang-Keun
    • 한국환경과학회지
    • /
    • 제16권5호
    • /
    • pp.561-569
    • /
    • 2007
  • This study used SCS-CN method to estimate the real recharge of the study area which is one of the most reasonable techniques to estimate groundwater recharge when there is no available runoff data in a watershed. From the results of tile real recharge analysis for the study area using SCS-CN method, it was analyzed that the year 1994 when the drought was severe shotted the lowest recharge of 106.3mm with recharge rate of 12.4%, and the highest recharge of 285.6mm with recharge rate of 21.8% occurred in 1990. Yearly average recharge of 213.2mm was obtained, and tile average recharge rate was 16.9%/year. KOG-FLOW model which has powerful post process functions consists of setting environments for input parameters in Korean language, and help function is added to each input data. Detailed information for each parameter is displayed when the icon is placed on the input parameters, and geologic boundaries or initial head data for each layer can be set easily on work sheet. The relative errors (R. E.) for each model's observed values and calculated values are $0.156{\sim}0.432$ in case of KOG-FLOW, and $0.451{\sim}1.175$ in case of WINFLOW, therefore it is known that KOG-FLOW model developed in this study produced results compared to observed head values.

지하수 부존량 평가와 관리에 대한 소고 (A Note on Estimating and Managing Groundwater Reserves)

  • 이병선;박종환;명우호;손주형;이상화;심규성;송성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.28-36
    • /
    • 2018
  • This study was conducted to estimate groundwater reserves within a designated depth. Three methods were applied to one representative county in southern Gyeongsang province, South Korea, to estimate the groundwater reserves in the aquifers. Estimated amounts of groundwater reserves in the region ranged from $20.2{\times}10^9m^3$ to $68.7{\times}10^9m^3$ (average $37.9{\times}10^9m^3$). Groundwater recharge obtained with a recharge ratio of 16.6% was $1.1{\times}10^9m^3/year$. Exploitable groundwater with an assumption of decadal-cycle minimal rainfall of 977.0 mm/year was approximated as 72% ($0.8{\times}10^9m^3/year$) of the total replenished water by recharge. The volume of recharge and exploitable water accounted for only 1.1% and 0.8% of groundwater reserves, respectively, which indicates substantial capacity of the reservoir to supply groundwater in an event of unexpected droughts. Nonetheless, each groundwater well should strictly comply with its allocated pumping rate to avoid alluvial groundwater depletion.

MODFLOW-Farm Process Modeling for Determining Effects of Agricultural Activities on Groundwater Levels and Groundwater Recharge

  • Bushira, Kedir Mohammed;Hernandez, Jorge Ramirez
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권5호
    • /
    • pp.17-30
    • /
    • 2019
  • Intensive agricultural development in Mexicali valley, Baja-California, Mexico, has induced tremendous strain on the limited water resources. Agricultural water consumption in the valley mainly relies on diversions of the Colorado River, but their water supply is far less than the demand. Hence, the use of groundwater for irrigation purposes has gained considerable attention. To account for these changes, it is important to evaluate surface water and groundwater conditions based on historical water use. This study identified the effects of agricultural activities on groundwater levels and groundwater recharge in the Mexicali valley (in irrigation unit 16) by a comprehensive MODFLOW Farm process (MF-FMP) numerical modeling. The MF-FMP modeling results showed that the water table in the study area is drawn downed, more in eastern areas. The inflow-outflow analysis demonstrated that recharge to the aquifer occurs in response to agricultural supplies. In general, the model provides MF-FMP simulations of natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand in the study area.

통합수문모형을 이용한 장성지역의 분포형 지하수 함양량 추정 (Estimation of Distributed Groundwater Recharge in Jangseong District by using Integrated Hydrologic Model)

  • 정일문;박승혁;이정은;김민규
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.517-526
    • /
    • 2018
  • 지하수 함양은 기후조건, 토지이용, 수리지질학적 비균질성에 의해 시공간적인 변동성을 나타내므로 통합수문해석에 의한 지하수 함양량의 추정이 필요하다. 본 연구에서는 SWAT-MODFLOW 연계모형을 활용하여 장성지역의 물리적 기반의 일단위 지하수 함양량을 산정하였다. 수문분석은 하천에서의 관측유량과 계산유량의 검보정에 이어 부정류 지하수위의 계산값과 관측값의 비교를 통해 모형의 정확도를 평가하였다. 추정된 수문성분은 상호간에 서로 관련이 깊고, 유역내의 비균질한 인자들인 소유역 경사, 토지이용, 토양종류에 따라 지하수 함양량의 공간적 변동이 크게 나타났다. 통합수문모형은 지표수 및 지하수 수문성분 프로세스의 시공간적 변화를 잘 모의하고 있는 것으로 평가되었다. 추정된 함양량의 평균은 약 20.8%로 나타났다.