• Title/Summary/Keyword: Groundwater pumping

Search Result 324, Processing Time 0.027 seconds

Ultrasonic Engancement of Flow in Clayey Sands (점토질 모래에서의 Ultrasonic을 이용한 투수성의 증진)

  • 이광열
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 1993
  • Remediation technology becomes an issue in environmental engineering. The vibro-recovery technique is one of popular means to remove pollutants from contaminated soils and groundwater. Using Ultrasonic excitation in soil-fluid medium, it was found that removal efficiency in a mechanical effects was significant. In this paper, therefore, laboratory experiments were conducted on clayey sand soil columns using a probe-type ultrasonic processor. Ultrasonic treatment with simultaneous pumping enhances dislodgement of clay particles, and ultrasonic excitation reduced the proportions of finer particles and thus result in increased hydraulic conductivity significantly. Also, the results provided the changes in grain size distribution curve of the soil due to ultrasonic excitation. The results indicated that the maximum size of particles mobilized by Ultrasonic is about 0.004mm and particles in the size range from 0.04mm to 1.0mm were subjected to fracturing. The economic feasibility of Ultrasonic implementation is considered in power requirement of the generator and maintenance of the horn. At a specified amplitude of vibrations, the power requirement of the generator depends on overburden pressure of the horn, temperature and viscosity of fluid in the soil medium. For comparisons, the requirement of a one inch and two inch diameter horn sonicators are compared with the power required for pumping water from different depths.

  • PDF

Assessment for geothermal energy utilization in the riverbank filtration facility (강변여과수 시설에서의 지열에너지 활용 가능성 평가)

  • Shin, Ji-Youn;Kim, Kyung-Ho;Bae, Gwang-Ok;Lee, Kang-Kun;Jung, Woo-Sung;Suk, Hee-Jun;Kim, Hyeong-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.485-488
    • /
    • 2007
  • Riverbank filtration is a kind of artificial aquifer recharge for the fresh water supply. By construction of several production wells penetrating the riverbank, surface water withdrawn from the river would pass riverbed. This extracted water is well known to be cooler than surface water in summer and warmer than surface water in winter, showing more constant water temperature. This characteristic of extracted water is applied to geothermal energy utilization. Prediction of the annual temperature variation of filtrated water is the major concern in this study. In Daesan-myeon, Changwon-si, Gyeongsangnam-do, South Korea, riverbank filtration facility has been on its operation for municipal water supply and thermal energy utilization since 2006. Appropriate hydraulic and thermal properties were estimated for flow and heat transfer modeling with given pumping rate and location. With the calibrated material properties and boundary conditions, we numerically reproduced measured head and temperature variation with acceptable error range. In the numerical simulation, the change of saturation ratio and river stage caused by rainfall was calculated and the resulting variation of thermal capacity and thermal conductivity was considered. Simulated temperature profiles can be used to assess the possible efficiency of geothermal energy utilization using riverbank filtration facility. Influence of pumping rate, pumping location on the extracted water temperature will be studied.

  • PDF

The Scale-dependent of Hydraulic Conductivity in Leaky Confined Aquifer with High Permeability at the Ttaan Isle, Gimhae City (김해 딴섬의 고투수성 누수 피압대수층에서 수리전도도의 규모종속효과)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kim, Byung-Woo;Kwon, Byung-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Pumping test was conducted to understand hydraulic conductivity for leaky confined aquifer with high permeability. Test aquifer was formed in $25{\sim}35\;m$ below ground surface at predetermined site of riverbank filtration which junction of Nakdong river and Milyang river in the Ttaan isle, Gimhae city, Korea Monitoring wells were located at intervals of 2 m and 5 m from pumping well in south-west direction (MW1 and MW2 wells) and northeast direction (MW3 and MW4 wells), respectively. Pumping test was continuously conducted for constant pumping rate of $2,500m^3/day$, hydraulic conductivity was estimated using AQTESOLV 3.5 program. Hydraulic conductivity were estimated to be $1.745{\times}10^{-3}m/sec$ for pumping well (PW), $2.452{\times}10^{-3}m/sec$ for between PW and MW1 wells, $2.161{\times}10^{-3}m/sec$ for between PW and MW2 wells, $2.270{\times}10^{-3}m/sec$ for between PW and MW3 wells and $2.591{\times}10^{-3}m/sec$ for between PW and MW4 wells. The function of hydraulic conductivity (K) as monitoring distance (d) were estimated to be logK = 0.0693logd - 2.671 for south-west direction (PW-MW1-MW2 line), logK = 0.0817logd - 2.655 for north-east direction (PW-MW3-MW 4 line). Scale exponent of hydraulic conductivity as test volume was estimated using Schulze-Makuch et al.(1999) method. Scale exponent of this aquifer was estimated to be 0.15. It means that test aquifer has very low heterogeneity. The radius of influence estimated using transmissivity, maximum groundwater level displacement, distance from pumping well and pumping rate during pumping test were 7.148 m for south-west direction and 6.912 m for north-east direction. The increasing rate of hydraulic conductivity from pumping well to maximum radius of influence were estimated to be 1.40 times for south-west direction and 1.49 times for north-east direction. Thus, heterogeneity of test aquifer was a little higher in north-east direction.

[Retraction] The Evaluation of Lithium Bearing Brine Aquifer Systems (2) (The Investigation Method and Estimate of Lithium Deposits) ([논문 철회] 리튬 함유 고염수체(Brine Aquifer System)의 자원 평가 (2) (리튬광상의 가채량 조사와 산정방법))

  • Hahn, Jeongsang;Lee, Juhyun;Lee, Kwangjin;Hahn, Chan;Ahn, Gyucheon
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.1-16
    • /
    • 2018
  • Recent development of lithium ion batteries for vehicles industries have led to a boom in lithium exploration and development for the new generation of batteries. One of the cheapest sources of lithium is the brines hosted in the aquifers of the arid intermontane-closed salar basins. Because the resource is a fluid, with the attendant problems of in-aquifer mixing, reorganization, and lower recovery factors compared with most metalliferous and industrial mineral deposits due to reliance on pumping of the brine from wells for extraction, existing codes for filing resource and reserve estimates require new approach for these prospects. Evaluation of brine resources is complex and requires participation of a variety of qualified experts such as hydrogeologists, geologists, geochemists and chemical engineers. The technical reports disclosing the results of these estimates should reflect the inputs of multi-disciplinary approaches. The requirements for brine resource and reserve evaluation, drawing on several examples from the experiences in the Central Andes are reviewed in this paper.

Simulation of Open-Loop Borehole Heat Exchanger System using Sand Tank Experiment and Numerical Model (토조 및 수치모형을 이용한 개방형 지중 열교환 시스템 모의)

  • Lee, Seong-Sun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.489-492
    • /
    • 2007
  • Understanding the thermohydraulic processes in the aquifer is necessary for a proper design of the aquifer thermal energy utilization system under given conditions. Experimental and numerical test were accomplished to evaluate the relationship between the geothermal heat exchanger operation and hydrogeological conditions in the open-loop geothermal system. Sand tank experiments were designed to investigate the open-loop geothermal system. Water injection and extract ion system as open-loop borehole heat exchanger was applied to observe the temperature changes in time at injection well, extraction well and ambient groundwater. The thermohydraulic transfer for heat storage was simulated using FEFLOW for two cases of extraction and injection phase operation in sand tank model. As one case, the movement of the thermal plume was simulated with variable locations of injection and extraction well. As another case, the simulation was performed with fixed location of injection and extraction well. The simulation and experimental results showed that the temperature distribution depends highly on the injected water temperature and the length of injection time and the groundwater flow and pumping rate sensitively affect the heat transfer.

  • PDF

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

Hydrologic Cycle Simulation of Urban river for Rehabilitation of Water Environment (I) - Anyangcheon Basin - (물 환경 건전화를 위한 도시하천의 물 순환 모의 (I) - 안양천 유역 -)

  • Lee, Jung-Min;Lee, Sang-Ho;Lee, Kil-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.349-357
    • /
    • 2006
  • Nowadays, the discharges of urban streams during dry season are depleted because the hydrologic cycle in the watershed has been destroyed due to the expansion of the impermeable area, the excessive groundwater pumping, climate change, and so forth. The streamflow depletion may bring out severe water quality problems. This research are to investigate the hydrologic characteristics and to develop a technology to restore sound hydrologic cycle of Anyangcheon watershed. For the hydrological cycle analysis of the Anyangcheon watershed, continuous simulations of urban runoff were performed for the upstream basin of Gocheok bridge whose basin area covered 4/5 of the whole catchment area. The increase of impervious area by urbanization was analysed and its effect on urban runoff was evaluated. The SWMM 5 (Storm Water Management Model 5) was used for the continuous simulation of urban runoff. The analysis results of urbanization effect on runoff are as follows: the surface runoff in 2000 increases to 65% of the whole precipitation whereas the surface runoff in 1975 amounts to 50% of the precipitation; the groundwater runoff in 2000 amounts to 7% and shows 6% decrease during the period from 1975 to 2000.

대기압의 변화에 따른 휘발성 오염물질의 토양에서 대기로의 거동

  • Choi Ji-Won;Smith James A.;Hwang Gyeong-Yeop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.114-116
    • /
    • 2005
  • Natural attenuation has been actively studied and often selected as final clean-up process in remediation of contaminated ground-water and soil for the last decade. Accordingly, understanding of natural processes affecting the fate and transport of contaminants in the subsurface becomes important for a success of implementation of the natural remediation strategy, Contaminant advection and diffusion processes in the unsaturated zone are naturally related to environmental changes in the atmosphere. The atmospheric pressure changes affecting the transport of contaminants in the subsurface are investigated in this study. Moisture content, trichloroethylene (TCE) concentration, temperature, and pressure variations in the subsurface were measured for the July, August, November, and December 2001 at Picatinny Arsenal, New Jersey. These data were used for a one-phase flow and one-component transport model in simulating the soil-gas flow and accordingly the TCE transport in the subsurface in accordance with the atmosphere pressure variations at the surface. The soil-gas velocities during the sampling periods varied with a magnitude of $10^{-6}\;to\;10^{-7}\;m\;s^{-1}$ at land surface. The TCE advection fluxes at land surface were several orders of magnitude smaller than the TCE diffusion fluxes. A sensitivy analysis indicated that advection fluxes were more sensitive to changes in geo-environmental conditions compared to diffusion fluxes. Of all the parameters investigated in this study, moisture content has the most significant effect on TCE advection and diffusion fluxes.

  • PDF

Estimation of Hydraulic Parameters of a Fractured Rock Aquifer Using Derivative Analysis (변동량 분석을 이용한 암반대수층의 수리학적 매개변수 산출)

  • Kim, Bum-Su;Yang, Dong-Chul;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.46-52
    • /
    • 2010
  • Derivative analysis, based on the derivative of the drawdown as a function of time (i.e., rate of drawdown change), was applied to the evaluation of hydraulic parameters of the aquifer as an aid of the aquifer test interpretation based on the Theis solutions. Pumping tests were conducted at a coastal fractured aquifer in Muan county, Korea, of which the drawdown data, measured at the two observation wells, were used for derivative analysis. Wellbore storage and transition period were hard to identify at conventional log-log and semi long plots, but was easily recognized by distinctive curves of positive unit slope, hump and negative unit slope in the derivative plot. For the observation well of OW-2 at which wellbore storage and transition lasted over an hour, conventional aquifer analysis would suffer from the uniqueness problems and in further result in erroneous hydraulic parameters. Derivative analysis was found to be effective for distinguishing the drawdown data directly reflecting the aquifer property from those reflecting non aquifer effects such as wellbore storage and transition, which offers a unified methodology to yield correct hydraulic parameters from aquifer test data.

Analysis of Groundwater Level Fluctuation according to Groundwater Development and Pumping (지하수 개발 및 양수에 의한 지하수위 변동 분석)

  • Kim, Min-Chul;Yang, Sung-Kee;Jang, Woo-Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.248-248
    • /
    • 2015
  • 제주도의 연평균 강수량은 지속적으로 증가하고 있으나 강우일수는 감소하는 추세로 기후변화에 의한 가뭄재해 피해가 우려되고 있다. 제주도는 전체 수자원의 대부분을 지하수로 사용되어 면적 대비 많은 지하수관정이 개발 이용되고 있으며, 용수이용에 따른 고갈 및 오염이 발생되지 않도록 분석 관리가 필요한 지역이다. 제주지역의 지하수위는 계절적 변동특성이 확연히 나타나지만 평시에는 큰 변동이 없는 지하수위 수준을 보이며, 실제 지하수 이용률은 허가량의 30%이하로 양수에 의한 지하수위변동은 크게 체감되지 못하고 있다. 그러나 극심한 가뭄재해 발생 시 기존 사용량을 초과 양수하는 문제가 발생하여 지하수위는 급격하게 하강되고, 제주 수자원관리에 문제가 발생될 것으로 지속적인 지하수 개발이 지하수위에 미치는 영향에 대하여 정량적인 분석이 필요하다. 본 연구에서는 지하수 유동 및 수위변동 분석이 가능한 수치해석 모형을 이용하여 제주도 성산유역을 대상으로 1993년부터 2013년까지 10년 주기 양수에 따른 지하수위 하강 특성을 분석하였다. 1993년 이전 개발된 지하수관정은 55개소, 2003년까지 개발된 지하수관정은 108개소로 지하수 개발은 약 1.9배 증가되었으나 양수능력을 적용하여 지하수위 변동을 분석한 결과 2.5배~3.1배 하강되는 것으로 확인되었다. 2003년부터 2013년까지 지하수 개발은 유역 상부에 집중되었으며 상류부 지하수 양수에 따라 해안지역의 지하수위까지 영향을 미치는 것으로 확인되었다.

  • PDF