• Title/Summary/Keyword: Groundwater pollution

Search Result 355, Processing Time 0.032 seconds

Groundwater and Soil Environment of Plastic Film House Fields around Central Part of Korea (우리나라 중부지방의 시설원예 토양 및 지하수 환경)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Jung, Yeun-Tae;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • The objective of this study was to know the qualities of soil and shallow groundwater in plastic film house fields around Central Part of Korea. The study was conducted at 11 sites in Suweon, Hwasung, Pyungtaek, Yongin and Chuncheon through May to August in 1999. Soil textures of plastic films house were mainly sandy loam or loam. Electric conductivity and organic matter content of surface soils mostly exceeded the critical levels for crop production. Average concentration of $NO_3-N$ in the sha]low groundwater was 19.1 mg/L, and it reached almost the limiting level of agricultural groundwater quality (20 mg/L). Moreover about 36% of survey sites exceeded the limiting level of agricultural groundwater quality. Sulfate concentrations also at some sites exceeded agricultural groundwater quality limit level (50 mg/L). Nitrate-N, one of the most important factors in the groundwater quality, had positive correlations with other ions in foundwater.

Trends of Groundwater Quality in the Areas with a High Possibility of Pollution (국내 오염우려지역의 지하수 수질 추세 특성)

  • Kim, Gyoobum;Choi, Doohoung;Yoon, Pilsun;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.5-16
    • /
    • 2010
  • Groundwater quality monitoring wells, which is over 2,000 in South Korea, were managed to observe groundwater quality since the early 1990s. Groundwater was sampled and analyzed biannually from 781 monitoring wells located in the areas with a high possibility of pollution. The average concentrations of cyanide, mercury, phenols, hexavalent chromium, trichloroethylene, tetrachloroethylen, and 1.1.1-trichloroethane for 12 years' data of detected cases were above the groundwater quality standard, but the average concentrations of the general quality items such as pH, electric conductivity, nitrate-nitrogen, and chloride, are below the standard. To compare a quality trend for each land-use type of the monitoring site, Sen's method is used for four quality items; chloride, nitrate-nitrogen, pH, and electric conductivity. The upward trend for these items is remarkable in urbideareas and industrial complexes and this trend continues still strongly after 2001. The deviation in a trend slopes of monitoring wells becomes bigger in the mid-2000s. In conclusion, trend analysis using existing monitoring data cidebe effective to forecast the future water quality condition and the solid action to protect groundwater quality should be done in advance using a result of trend analysis.

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

A study of the pollution of ground water in the basin of the river Baem Nae Chun, Sorae-Myun, Shihoong-gon, Kyonggi-Do, Korea (경기도 시흥군 소래면 뱀내하천 유역의 지하수 오염에 관한 연구)

  • 김윤종;정봉일
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1973
  • The progressive contamination of water resulted from man's activity and the use of fertilizers is not restricted only to surface water, but also the shallow groundwater is affected. This type of groundwater contamination is mainly restricted to areas composed of permeable, nonconsolidated sediments forming a shallow aquifer. The chloride and the sulfate resulted from man's activity and the use of fertilizers were measured to study the variations of the groundwater contamination. In general, (1) When water level rises, the rate of groundwater contamination becomes less and when water level declines, the rate of contamination is increased. (2) The highly contaminated season is the early-summer and the less contaminated season is the winter or after rainy season. (3) The groundwater in weathering zone without covering layer. (4) The degree of contamination of wells is increased with the increase of well depth and lowing the water table, because of increasing contaminated water from enlargement of the area of influence of the well.

  • PDF

A Study on Countermeasure and Contamination Analysis for Heavy Metal Pollution of Nearby Area using Stony Mountain Field Case (석산개발 사례를 이용한 주변 지역의 중금속 오염분석 및 대책방안에 관한 연구)

  • Han, Jung-Geun;Yoon, Won-Il;Lee, Yang-Kyu;Lee, Jong-Yuong;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.57-66
    • /
    • 2010
  • This study is described in heavy metal pollution by the stony mountain development using field case. The heavy metal pollution is investigated for nearby area (soil and stream) of the developed stony mountain, and then the countermeasure using contamination analysis is suggested. The investigation result indicated that contamination of Sammak stream caused by the stone dust and leachate at the stony mountain development. Therefore, the heavy metal pollution is evaluated by using Pollution Index(PI). The evaluation results confirmed that the contaminated groundwater was the leading cause of the contamination in Sammak stream and nearby soil. Therefore, the Permeable Reaction Barrier(PRB), which has a environmentally-friendly reactant, should be applied to control a heavy metal of groundwater, and it will be a reasonable countermeasure.

  • PDF

Development of Remote Monitoring System for groundwater purifier apparatus for community wells (마을 공동 우물용 지하수 정수 장치의 원격 모니터링 시스템 개발)

  • Kim, Dong-Jin;park, Sang-heup;Lee, Hong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.224-231
    • /
    • 2019
  • Recently, the pollution of groundwater has become serious. In particular, the contamination of groundwater near livestock farms is becoming increasingly severe and it is difficult to drink with drinking water. In this paper, a groundwater purifier apparatus that can be installed in a community well was designed. The designed groundwater purifier apparatus enables a RO membrane filter and UV sterilization to remove pollutants, such as heavy metals, bacteria, and organic compounds. In addition, electrical conductivity, pressure, and flow sensors were added for remote monitoring. Remote monitoring of the system can determine the level of fouling and contamination of RO membrane filters through pressure and flow sensor data, and can record changes in the contamination and condition of groundwater through the electrical conductivity of the feed water. The designed groundwater purifier apparatus was installed at a farmhouse and remote monitoring. The result after 15 days of operating a groundwater purifier apparatus and analyzing the monitoring data revealed an average permeate water flow rate of 2.67L/min and an average water pressure of 7.09kgf/㎠, indicating that the RO Membrane filtered without fouling and clogging. The average electrical conductivity was 796.6 S/㎠ of the feed water and 55.6 S/㎠ of permeate water, which is similar to that of general tap water. Through this, it was confirmed that no pollutant occurred in the surroundings. Therefore, the designed groundwater purifier apparatus can confirm the replacement time of the RO membrane filter in advance through remote monitoring, and check the pollution state of the groundwater.

Emerging Remediation Technologies for the Contaminated Soil/Groundwater in the Metal Mining Areas (금속광산지역 오염 토양/지하수의 복원기술 동향)

  • 김경웅
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Pollution reduction and/or control technology becomes one of the pressing post-semiconductor research field to lead an advanced industrial structure. Soil/groundwater remediation techniques may act as a core technology which will create many demands on pollution reduction areas. A plenty numbers of abandoned metal mines were left without any remediation action in Korea, and it may be potential sources of heavy metal and As contamination in the ecosystem. In order to bring this soil contamination to a settlement, the emerging soil/groundwater remediation techniques should be introduced. Main research topics in the United States and Europe move towards the clean remediation technology without any secondary impact and the feasible application of developing technique into the field scale study. With these advantages, several soil/groundwater techniques such as electrokinetic soil processing, permeable reactive barrier, stabilization/solidification, biosorption, soil flushing with biosurfactant, bioleaching and phytoremediation will be summarized in this paper.

Municipal solid waste management in India - Current status, management practices, models, impacts, limitations, and challenges in future

  • Jagriti Patel;Sanskriti Mujumdar;Vijay Kumar Srivastava
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.95-111
    • /
    • 2023
  • Pollution, climate change, and waste accumulation are only some of the new problems that have arisen because of the exponential population growth of the past few decades. As the global population expands, managing municipal solid trash becomes increasingly difficult. This is by far the most difficult obstacle for governments to overcome, especially in less developed nations. The improper open dumping of trash, which is causing mayhem across the country, has two immediate effects: it contaminates groundwater and surface water. Air pollution and the accumulation of greenhouse gases are both exacerbated by the release of methane and other harmful waste gases. Leachate from the landfill leaks underground and pollutes groundwater. In most cases, leachate moves into the groundwater zone and pollutes it after forming in association with precipitation that infiltrates via waste. This has far-reaching effects on people's health and disturbs the natural environment. This review article critically examines the current state of Solid Waste Management (SWM), addressing both the highlighted concerns and the government management solutions that have been put in place to address these issues. In addition, the constraints, and difficulties that India will face in the future in terms of solid waste management and the role of models for such a system are discussed.

대전광역시 지하수의 수리화학 특성 및 오염에 대한 토지이용 형태 및 도시화의 영향

  • 정찬호;김은지
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.35-37
    • /
    • 2001
  • This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use in Daejeon Metropolitan City. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.9. electrical conductance ranges from 65 to 1,290 S/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most of groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HC $O_3$ type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (N $O_3$+S $O_4$) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The Ep$CO_2$, that is the $CO_2$ content of a water sample relative to pure water, was computed to obtain more insight into the origin of $CO_2$ and bicarbonate in the groundwater. Factor analysis of the chemical data shows that the HC $O_3$ and N $O_3$ concentrations have the highest factor loadings on factor 1 and factor 2, respectively. Factors 1 and 2 represent major contributions from natural processes and human activities, respectively. The results of the factor analysis indicate that the levels of $Ca^{2+}$, $Mg^{2+}$, N $a^{+}$, Cl and SO4$^2$ derive from both pollution sources and natural weathering reactions.ons.

  • PDF

호소 및 하천의 오염 저질토 sampling 방법 및 처리방안 연구

  • 최동호;배우근;최형주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.115-119
    • /
    • 2003
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water body can accumulate in sediment at much higher levels, the purpose of this study was to make convenient sampling method and optimal treatment of sediment for water quality improvement in reservoir or stream based on an evaluation of degree of contamination. Results for analysis of S-reservoir sediments were observed that copper concentration of almost areas were higher than the regulation of soil pollution (50 mg/1) for the riverbed. S-stream sediments were observed that copper, arsenic and TPH concentration of almost areas were exceeded soil pollution concerning levels for factorial areas. We used Remscreen(version. 1.0) program which is contaminated soil recovery program to select optimal treatment method of contaminant sediments. The result was shown in the order of Thermal Calcination > Excavation, Retrieval and Off-site Disposal(comparative less then contaminant) > Low Temperature Thermal Desorption + Solidification/Stabilization.

  • PDF