• Title/Summary/Keyword: Groundwater modeling

Search Result 331, Processing Time 0.026 seconds

Partitioning Interwell Tracer Test and Analysis Method for Estimating Oil Pollutants in the Underground (지중 유류오염량 추정을 위한 분배추적자 시험 및 해석방법)

  • Jeong, Chan-Duck;Kim, Yong-Cheol;Myeong, Woo-Ho;Bang, Sung-Su;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.99-112
    • /
    • 2022
  • From early 2000, many researchers in the groundwater and soil environment remediation project tried to calculate the pollution level and pollution remediation cost and reflect it in the design. In addition, by identifying the movement characteristics of oil pollutants in the underground environment, many researchers tried to derive design factors necessary for pollution purification. However, although the test should be conducted in an area contaminated with oil, the toxicity and risk are too great for testing by deliberately leaking pollutants that are harmful to the human body. And as oil-contaminated areas are promoted by military units such as returned US military bases, there is a limit to access by the general public. In addition, since the indoor simulation test and the field application test have been carried out separately from each other, it was difficult to compare and review various simulation tests Therefore, in this study, PITT (Partitioning Interwell Tracer Test) and analysis methods were specifically presented through actual tests so that field workers could easily use them with the help of the military base and the Korea Rural Community Corporation Soil Environment Restoration Team. However, in order to directly reflect the distribution tracer test results in the pollution remediation design, it is necessary to reduce the analysis errors by comparing the analysis results of the existing soil pollution survey, physical exploration, and numerical modeling. In addition, it is judged to be cautious in the analysis because errors can easily occur due to various factors such as the type of oil at the polluted site, the hydraulic conductivity of the aquifer, and the skill of the researcher.

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

Coastal Water Circulation Modeling with Water Exchange through Permeable Dike (투수성 호안제체을 통한 해수교환을 고려한 해수유동 모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.301-307
    • /
    • 2006
  • In coastal zones with high tidal ranges like Korean western coast, port construction and reclamation projects have been increased. Most of the projects include sea-dyke construction. In the sea-dykes constructed to protect sea water intrusion, sea water was exchanged through the permeable dykes. The water level inside the area enclosed by the dykes changes with time due to tidal action of outer sea, but the tidal range is smaller than that of outside because of strong friction. In numerical modeling of coastal circulation the water exchange through the dykes has been neglected, which has produced inaccurate estimation neglecting the water exchange. In this study a method, which can consider water exchange through sea-dyke, was suggested and the modeling accuracy was improved. A groundwater theory was utilized to explain the phenomena.

Modeling Low Flows Considering Interaction between River and Groundwater in Cheonggyecheon Watershed (하천-지하수 흐름 교환을 고려한 청계천 유역의 갈수량 모의)

  • Kim, Hyeon-Jun;Noh, Seong-Jin;Jang, Cheol-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.265-269
    • /
    • 2005
  • 본 연구에서는 분포형 수문모형인 WEP 모형을 도시하천인 청계천 유역에 적용하여 하천 유출을 모의하였다. 하천-지하수 흐름 교환을 고려하여 건천화된 하천 유역의 갈수량을 모의하기 위해 하천 및 지하투수층의 매개변수 자료를 실측 자료로 구축하거나 실측 자료를 바탕으로 이를 보간하여 구축하였다. 모형의 적용 결과, 청계천 유역 상류 부관은 관측값과 비슷한 모의 양상을 보였으나 하류 부근은 모의 결과와 관측값이 상이하였는데, 이는 상류 부근은 도시화가 적게 진행된 반면, 하류 부근은 대부분 도시화되어 지하철, 합류식 하수관 등 하천-지하수의 흐름 교환을 차단하는 인공적인 요소가 많기 때문으로 판단된다. 도시하천 갈수량의 보다 정확한 모의를 위해서는 도시지역 인공적인 지하수 차단 요인에 대한 세밀한 모형화와 자료 구축이 요구된다.

  • PDF

Development of an Accurate Numerical Model for Density-Dependent Groundwater Flow and Solute Transport (밀도가 변하는 지하수흐름과 용질의 수송을 위한 정확한 수치모델의 개발)

  • Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.753-759
    • /
    • 1997
  • A new numerical model was doveloped to simulate density-dependent ground water flow and solute transport. Accuracy of a numerical model depends upon how well it simulates advection dominant situations because numerical oscillations can spoil solutions for these situations. Nonlinear oscillation-absorption finite element method. based on the variational principle, was employed. Unlike previous numerical models, this model can easily be expanded for more complex situations. Accuracy of the model is evaluated by comparing with analytical solutions and results of other numerical model.

  • PDF

Modeling of Acid/Base Buffer Capacity of soils (토양의 산/염기 완충능의 모델링)

  • 김건하
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Acid/Base buffer capacity of soil is very important in prediction of contaminant transport for its direct impact on pH change of the system composed of soil-contaminant-water, In this research, diffuse double layer theory as well as two layer electrostatic adsorption model are applied to develop a theoretical model of buffer capacity of soil. Model application procedures are presented as well. Buffer capacity of Georgia kaolinite and Milwhite kaolinite was measured by acid-base titration. Model prediction and experimental results are compared.

  • PDF

Numerical Modeling Study for Groundwater Flow at Chun-Mi Creek, JeJu Island (제주도 천미천 유역의 지하수위 변동 수치모의)

  • Choi, Jung-Hyun;Park, Hwa-Jun;Kim, Won-Il;Ho, Jung-Seok;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.702-706
    • /
    • 2007
  • 본 연구에서는 실측 강수 자료를 적용하여 장기 지하수위의 변동을 수치모의하고, 그 결과를 관측정으로부터 측정된 실측 지하수위와 비교하였다. 모형의 구축은 제주도 한라산 중산간으로부터 해안까지 이르는 유역 면적 $310km^2$의 천미천 유역을 대상으로 하였으며, 2001년 11월 부터 2002년 10월까지 12개월간의 강우에 따른 지하수위의 변동을 평형상태로 해석하였다. 미국 지질조사국 (USGS) 에서 개발한 3차원 유한차분 해석 프로그램인 MODFLOW 모형을 선정하여 적용한 결과를 유역 내의 12개 관측정 측정수위와 비교하였으며, 대상지역에서 14.7m의 평균 오차와 21% 정규 실효치를 나타내었다. 향후 모형 구축 및 모의 결과의 신뢰도를 향상시키기 위해 격자수와 크기의 조절 및 공간적 분포에 따른 대수층의 투수계수와 저류계수의 민감도 분석을 수행하여야 할 것으로 판단되며, 계속 연구 수행 중에 있다.

  • PDF

Borehole radar monitoring of infiltration processes in a vadose zone

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kuroda, Seiichiro;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.313-316
    • /
    • 2007
  • Ground-penetrating radar (GPR) is an effectiveness tool for imaging spatial distribution of hydrogeologic parameters. An artificial groundwater recharge test has been conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor infiltration processes in a vadose zone. Since radiowave velocities in a vadose zone are largely controlled by variations in water content, the increase in traveltimes is interpreted as an increase in saturation in the test zone. We use a finite-difference time-domain method in two-dimensional cylindrical coordinates to simulate field results. Numerical modeling successfully reproduces the major feature of velocity changes in the filtration process.

  • PDF

Estimation of deep percolation using field moisture observations and HYDRUS-1D modeling in Haean basin (해안분지의 현장 토양수분 관측과 HYDRUS-1D 모델링을 이용한 지하수 함양 추정)

  • Kim, Jeong Jik;Jeon, Woo-Hyun;Lee, Jin-Yong
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.545-556
    • /
    • 2018
  • This study was conducted to estimate the deep percolation using numerical modeling and field observation data based on rainfall in Haean basin. Soil moisture sensors were installed to monitoring at 30, 60 and 90 cm depths in four sites (YHS1-4) and automatic weather station was installed to around YHS3. Soil moisture and meteorological data was observed from March 25, 2017 to March 25, 2018 and May 06, 2016 to May 06, 2018, respectively. Numerical analysis was performed from June to August, 2017 using the HYDRUS-1D. Average soil moisture contents were high to generally in YHS3 for 0.300 to $0.334m^3/m^3$ and lowest in YHS1 for 0.129 to $0.265m^3/m^3$ during the soil moisture monitoring period. The results of soil moisture flow modeling showed that field observations and modeling values were similar but the peak values were larger in the modeling result. Correlation analysis between observation and modeling data showed that r, $r^2$ and RMSE were 0.88, 0.77, and 0.0096, respectively. This show high correlation and low error rate. The total deep percolation was 744.2 mm during the period of modelling at 500 cm depth. This showed that 61.3% of the precipitation amount (1,214 mm) was recharged in 2017. Deep percolation amount was high in the study area. This study is expected to provide basic data for the estimation of groundwater recharge through unsaturated zone.

Surface Complexation of Cationic Metal Adsorption Onto Amorphous Aluminum Oxide (무정형 알루미늄 산화물에 의한 양이온 중금속의 표면착화)

  • Park, Youn-Jong;Yang, Jae-Kyu;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The adsorption characteristics of cationic metals such as copper, cadmium, and lead onto the amorphous aluminum oxide, AMA-L, which was mineralized from raw sanding powder at $550^{\circ}C$ were investigated. Additionally, surface complexation reaction of cationic heavy metals onto AMA-L was simulated with MINEQL + software employing a diffuse layer model. From the batch adsorption tests in a single element system, the adsorption affinity of each metal ion onto AMA-L was following order: lead > copper > cadmium. In a binary system composed with copper and cadmium, quite a similar adsorption affinity was observed in each metal ion compared to the single element system. When the surface complexation constants obtained in the single system were used in the prediction of experimental adsorption results, model predictions were well fitted with experimental results of both single and binary systems.