• 제목/요약/키워드: Groundwater management

검색결과 590건 처리시간 0.028초

우리나라 중부지방 시설원예지 토양 및 지하수 환경 (Groundwater and Soil Environment of Plastic Film House Fields around Middle Korea)

  • 김진호;류종수;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.479-483
    • /
    • 2001
  • This Study was carried out to know the soil properties and the quality of shallow groundwater in the plastic film house fields around mid-Korea. This study was conducted at 11 sites in Suweon, Pyungtaek, Yongin, and Chunchen on May, June, July and August in 1999. The the average concentration of nitrate-nitrogen was 19.1 mg/L, it reached almost to the limiting level, 20 mg/L. Moreover about 36.4% of survey sites exceeded limiting level to agricultural groundwater quality. And Sulfur concentrations also at some sites exceeded to agricultural groundwater quality limit level (50 mg/L), which could make damage to the crop. Nitrate-nitrogen, which is one of the most important factors in the groundwater quality, It has highly positive correlation with any other ion in groundwater. This result showed that groundwater quality management practices should be taken for the agricultural production as well as for environment at the plastic film house areas.

  • PDF

우리나라 토양환경정보관리체계 구축방안

  • 황상일;이양희
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.3-5
    • /
    • 2005
  • The objective of this research was to develop a framework of the Soil Environment Information Management System (SEIMS). In this study, we found that the SEIMS needs to be consisted of three sub-systems (i.e., information input system, DB system, and opening to the public system), which is operated on the Web-GIS basis. Also, we suggested structure and detailed items for each sub-system which are acceptable under the basis of current legal and institutional system. Furthermore, we made several suggestions for future-oriented system. Further researches need to be pursued for developing efficiently the SEIMS, such as 1) DB standards for the SEIMS, 2) guidelines for each cleanup phase, 3) improvement of the SEIMS for groundwater quality, and 4) integrated SEIMS for both soil and groundwater system.

  • PDF

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

위해성 기반 오염부지관리를 위한 정책 및 기술개발 방향 (Future Direction on Policy and Technology Development for the Risk-based Contaminated Site Management)

  • 조명현;김도형;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.48-62
    • /
    • 2017
  • Korea and other countries have made various efforts to preserve soil. During the past several decades, Korea has implemented various policies on soil conservation practices; however, those policies have often lacked consideration of human and ecosystem risk management. while other countries have practiced various policies closely related to risk-based management for contaminated sites. Therefore, there is a great need for a paradigm shift of policy to better manage contaminated sites in risk-based strategies, while applying different management plans for soil and groundwater. In addition, the new policies should be administered with provision to improve soil health and related functions in ecosystem. This study has reviewed the trend in relevant policies in Korea and foreign countries to suggest the future policy directions for contaminated site management in Korea. For better management of contaminated sites, coherent policy that could complement the law, system, and relevant technology is required.

화학사고시 토양오염 사전관리제도 도입을 위한 국내외 제도 분석 및 시사점 (A Study on the Introduction of Pre-management System to Prevent Soil Contamination by Chemical Accident)

  • 유근제;양지훈;황상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.20-29
    • /
    • 2016
  • Although a number of chemical accidents have been occurred in South Korea, the effective prevention act for soil contamination has not been established so far. To effectively protect soil contamination from chemical accidents, decision support laws and regulations are absolutely essential. Regarding this situation, this study was aimed at diagnosing problems in current chemical safety management and prevention and response system against chemical accidents through analyzing the domestic and foreign causes of chemical accidents and the accident response procedures and finally suggesting policy measures for solving those problems. In order to clarify management of soil contamination by chemical accident, this study suggests the establishment of chemical accident preparedness, response, and making of local chemical management law and policy. This law needs to be supported by a clear management framework to guide government officials and all other stakeholders in the management of soil contamination by chemical accident.

오염 지중환경 특성화와 자연저감평가를 위한 말단전자수용과정(TEAPs) 분석 및 평가기술 소개 (Review of Analytical and Assessment Techniques of Terminal Electron Accepting Processes (TEAPs) for Site Characterization and Natural Attenuation in Contaminated Subsurface Environments)

  • 송윤선;김한석;권만재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권2_spc호
    • /
    • pp.1-15
    • /
    • 2020
  • Monitoring and assessing terminal electron accepting processes (TEAPs) are one of the most important steps to remediate contaminated sites via various in-situ techniques. TEAPs are a part of the microbial respiration reactions. Microorganisms gain energy from these reactions and reduces pollutants. Monitoring TEAPs enables us to predict degradability of contaminants and degradation rates. In many countries, TEAPs have been used for characterization of field sites and management of groundwater wells. For instance, US Environmental Protection Agency (EPA) provided strategies for groundwater quality and well management by applying TEAPs monitoring. Denmark has also constructed TEAPs map of local unit area to develop effective groundwater managing system, particularly to predict and assess nitrogen contamination. In case of Korea, although detailed soil survey and groundwater contamination assessment have been employed, site investigation guidelines using TEAPs have not been established yet. To better define TEAPs in subsurface environments, multiple indicators including ion concentrations, isotope compositions and contaminant degradation byproducts must be assessed. Furthermore, dissolved hydrogen concentrations are regarded as significant evidence of TEAPs occurring in subsurface environment. This review study introduces optimal sampling techniques of groundwater and dissolved hydrogen, and further discuss how to assess TEAPs in contaminated subsurface environments according to several contamination scenarios.

Contaminant transport through porous media: An overview of experimental and numerical studies

  • Patil, S.B.;Chore, H.S.
    • Advances in environmental research
    • /
    • 제3권1호
    • /
    • pp.45-69
    • /
    • 2014
  • The groundwater has been a major source of water supply throughout the ages. Around 50% of the rural as well as urban population in the developing countries like India depends on groundwater for drinking. The groundwater is also an important source in the agriculture and industrial sector. In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use and contamination. A good planning and management practices are needed to face this challenge. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface environment. It is obvious that the contaminant source activities cannot be completely eliminated and perhaps our water bodies will continue to serve as receptors of vast quantities of waste. In such a scenario, the goal of water quality protection efforts must necessarily be the control and management of these sources to ensure that released pollutants will be sufficiently attenuated within the region of interest and the quality of water at points of withdrawal is not impaired. In order to understand the behaviour of contaminant transport through different types of media, several researchers are carrying out experimental investigations through laboratory and field studies. Many of them are working on the analytical and numerical studies to simulate the movement of contaminants in soil and groundwater of the contaminant transport. With the advent of high power computers especially, a numerical modelling has gained popularity and is indeed of particular relevance in this regard. This paper provides the state of the art of contaminant transport and reviews the allied research works carried out through experimental investigation or using the analytical solution and numerical method. The review involves the investigation in respect of both, saturated and unsaturated, porous media.

지하수 관개지역 논에서의 배출부하 특성 (Characteristics of Pollutant Loading from Paddy Field Area with Groundwater Irrigation)

  • 윤춘경;김병희;전지홍;황하선
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.116-126
    • /
    • 2002
  • Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.