• 제목/요약/키워드: Groundwater level prediction

검색결과 76건 처리시간 0.02초

인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정 (Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model)

  • 신문주;문수형;문덕철;류호윤;강경구
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.485-493
    • /
    • 2021
  • 지하수는 지표수와 함께 용수로 사용가능한 중요한 수자원이며 특히 섬 지역의 경우 전체 수자원 중 지하수의 이용 비율이 상대적으로 높기 때문에 안정적인 이용을 위해 지하수위 변동성에 대한 연구는 필수적이다. 지하수위 변동성의 예측 및 분석을 위해 인공지능 모델을 활용한 연구들이 지속적으로 증가하고 있으나 지하수위 예측결과의 적절성을 판단할 수 있는 평가기준을 제시한 연구는 충분하지 않다. 본 연구에서는 허용가능한 지하수위 예측오차의 범위를 제시하기 위해 과거 20년 동안 전 세계 다양한 지역을 대상으로 인공지능 모델을 활용하여 지하수위를 예측한 연구결과들을 종합적으로 분석하였다. 그 결과 관측지하수위의 변동성이 커질수록 인공지능 모델에 의한 지하수위 예측오차는 증가하였다. 따라서 관측지하수위 최대변동폭과 예측오차 간의 상관성과 기존 연구들에서 제시한 평가지수들을 고려하여 평가기준을 산정하였으며, 인공지능 모델에 의한 지하수위 예측결과의 적절한 평가기준은 도출된 선형회귀식에 의한 평균제곱근오차 또는 최대오차 이하이거나, NSE ≥ 0.849 또는 R2 ≥ 0.880 이다. 이 허용가능한 오차범위는 인공지능 모델을 활용한 지하수위 예측결과의 적절성 판단을 위한 참고자료로 사용할 수 있다.

전남 무안 해안 대수층에서의 지하수위 예측을 위한 자기교차회귀모형 구축 (Development of the Autoregressive and Cross-Regressive Model for Groundwater Level Prediction at Muan Coastal Aquifer in Korea)

  • 김현정;여인욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.23-30
    • /
    • 2014
  • Coastal aquifer in Muan, Jeonnam, has experienced heavy seawater intrusion caused by the extraction of a substantial amount of groundwater for the agricultural purpose throughout the year. It was observed that groundwater level dropped below sea level due to heavy pumping during a dry season, which could accelerate seawater intrusion. Therefore, water level needs to be monitored and managed to prevent further seawater intrusion. The purpose of this study is to develop the autoregressive-cross-regressive (ARCR) models that can predict the present or future groundwater level using its own previous values and pumping events. The ARCR model with pumping and water level data of the proceeding five hours (i.e., the model order of five) predicted groundwater level better than that of the model orders of ten and twenty. This was contrary to expectation that higher orders do increase the coefficient of determination ($R^2$) as a measure of the model's goodness. It was found that the ARCR model with order five was found to make a good prediction of next 48 hour groundwater levels after the start of pumping with $R^2$ higher than 0.9.

인공신경망 모형을 이용한 제주 지하수위의 장기예측 (Long-term Prediction of Groundwater Level in Jeju Island Using Artificial Neural Network Model)

  • 정일문;이정우;장선우
    • 대한토목학회논문집
    • /
    • 제37권6호
    • /
    • pp.981-987
    • /
    • 2017
  • 투수성이 큰 화산섬인 제주도에서는 땅속으로 함양된 지하수자원이 가장 중요한 수원이므로 지하수의 적정관리가 매우 중요하다. 특히 가뭄시 지하수의 이용은 염수침투를 유발할 수 있으므로 지하수위 강하에 따른 단계별 제한 조치가 마련되어 있다. 농업용 지하수위에 대한 적정 지하수 이용을 위해서는 보다 장기적인 예측을 통해 사전에 대비하는 것이 필요하다. 이에 본 연구에서는 인공신경망 모형을 이용한 지하수위의 월단위예측기법을 개발하였고, 대표적인 관측공에 대해 적용하였다. 월단위 지하수위를 예측한 결과 학습 및 검증기간 모두 예측 성능이 우수한 것으로 분석되었다. 또한 장기예측을 위해서 입력인자로 월단위 지하수위 예측치를 순차적으로 이용하는 연속지하수위예측 모형을 구축하고 수개월 동안 무강수의 극한조건에 대한 지하수위 저하 양상을 분석하였다.

지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구 (A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation)

  • 윤희성;박은규;김규범;하규철;윤필선;이승현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권3호
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교 (Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method )

  • 송근산;송영진
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Prediction of the Salinization in Reclaimed Land by Soil and Groundwater Characteristics

  • Jeon, Jihun;Kim, Donggeun;Kim, Taejin;Kim, Keesung;Jung, Hosup;Son, Younghwan
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.131-140
    • /
    • 2021
  • It is becoming more important to utilize reclaimed lands in South Korea, due to the increasing competition for its usage among different sectors. However, the high groundwater level and poor permeability are exposing them to deterioration by salinization. Salinization is difficult to predict because the pattern changes according to various characteristics of soil and groundwater. In this study, the capillary rising time was studied by the water content profile in the soil. The prediction equation of soil salinity was developed based on simulation result of the CHEMFLO model. to enable prediction considering various soil water content and groundwater level. The two terms constituting the equation showed the coefficients of determination of 0.9816 and 0.9824, respectively. Using the prediction equation of the study, the surface salinity can be easily predicted from the initial surface salinity and the salinity of the groundwater. In the future, more precise predictions will be possible with the results of studies on the hydraulic characteristics of various reclaimed soils, changes in water content profile by seasonal and climate events.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

강우에 의한 지하수위 변동 예측모델의 개발 및 적용 (A Development of Groundwater Level Fluctuations Due To Precipitations and Infiltrations)

  • 박은규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권4호
    • /
    • pp.54-59
    • /
    • 2007
  • 본 연구에서는 수학적 모델링을 통해 강우에 기인하는 지하수위 변동예측 준-해석학적 모델을 개발하였다. 개발된 모델은 홍천 지역의 지하수위 변동을 예측에 적용되었으며 이를 위하여 지하수 변동 관측자료 및 강우자료가 이용되었다. 개발된 모델은 비선형 파라미터 예측 코드를 활용하여 2003년 지하수위 변동을 예측하도록 적정되었으며 이렇게 최적화에 이용된 입력 파라미터는 그 다음해인 2004년 지하수위 변동을 예측하는데 활용되었다. 강우자료에 기초한 2004년 지하수위 변동 예측은 RMS 오차가 0.18 m로 관측지하수위의 표준편차가 0.44 m인 것으로 미루어 보았을 때 대체로 양호한 것으로 판단된다. 또한 본 연구에서는 개발된 모델을 이용하여 지표 피복의 변화에 기인하는 함양율 감소 시 발생되는 지하수위 변동 예측 및 양수에 의한 인공적인 지하수위 강하를 모사하는데 적용하였다. 본 연구의 결과는 보다 정확한 지하수위 변동 예측증 위해서는 지하수 함양율을 상수로 적용하는 것이 적절치 않으며 강우 패턴의 함수로 결정되어야 함을 보인다.

지하수 채수에 따른 지반침하 사례분석

  • 정하익;구호본
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.168-171
    • /
    • 2001
  • It is a common practice to extract water from the ground for domestic, agricultural or industrial uses or to lower the groundwater level for construction work. An accurate prediction of ground settlement Is sometimes crucial when groundwater is pumped. This case study have shown that drawdown of the groundwater table may cause ground subsidence. Many settlement gauges was installed in the vicinity of a pumped well to measure the surface settlement. The relationships between the level of groundwater drop and surface settlement is investigated In this research.

  • PDF

가우시안 프로세스 회귀분석을 이용한 지하수위 추세분석 및 장기예측 연구 (Groundwater Level Trend Analysis for Long-term Prediction Basedon Gaussian Process Regression)

  • 김효건;박은규;정진아;한원식;김구영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.30-41
    • /
    • 2016
  • The amount of groundwater related data is drastically increasing domestically from various sources since 2000. To justify the more expansive continuation of the data acquisition and to derive valuable implications from the data, continued employments of sophisticated and state-of-the-arts statistical tools in the analyses and predictions are important issue. In the present study, we employed a well established machine learning technique of Gaussian Process Regression (GPR) model in the trend analyses of groundwater level for the long-term change. The major benefit of GPR model is that the model provide not only the future predictions but also the associated uncertainty. In the study, the long-term predictions of groundwater level from the stations of National Groundwater Monitoring Network located within Han River Basin were exemplified as prediction cases based on the GPR model. In addition, a few types of groundwater change patterns were delineated (i.e., increasing, decreasing, and no trend) on the basis of the statistics acquired from GPR analyses. From the study, it was found that the majority of the monitoring stations has decreasing trend while small portion shows increasing or no trend. To further analyze the causes of the trend, the corresponding precipitation data were jointly analyzed by the same method (i.e., GPR). Based on the analyses, the major cause of decreasing trend of groundwater level is attributed to reduction of precipitation rate whereas a few of the stations show weak relationship between the pattern of groundwater level changes and precipitation.