• Title/Summary/Keyword: Groundwater level fluctuation

Search Result 97, Processing Time 0.026 seconds

The Applicability of Conditional Generative Model Generating Groundwater Level Fluctuation Corresponding to Precipitation Pattern (조건부 생성모델을 이용한 강수 패턴에 따른 지하수위 생성 및 이의 활용에 관한 연구)

  • Jeong, Jiho;Jeong, Jina;Lee, Byung Sun;Song, Sung-Ho
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.77-89
    • /
    • 2021
  • In this study, a method has been proposed to improve the performance of hydraulic property estimation model developed by Jeong et al. (2020). In their study, low-dimensional features of the annual groundwater level (GWL) fluctuation patterns extracted based on a Denoising autoencoder (DAE) was used to develop a regression model for predicting hydraulic properties of an aquifer. However, low-dimensional features of the DAE are highly dependent on the precipitation pattern even if the GWL is monitored at the same location, causing uncertainty in hydraulic property estimation of the regression model. To solve the above problem, a process for generating the GWL fluctuation pattern for conditioning the precipitation is proposed based on a conditional variational autoencoder (CVAE). The CVAE trains a statistical relationship between GWL fluctuation and precipitation pattern. The actual GWL and precipitation data monitored on a total of 71 monitoring stations over 10 years in South Korea was applied to validate the effect of using CVAE. As a result, the trained CVAE model reasonably generated GWL fluctuation pattern with the conditioning of various precipitation patterns for all the monitoring locations. Based on the trained CVAE model, the low-dimensional features of the GWL fluctuation pattern without interference of different precipitation patterns were extracted for all monitoring stations, and they were compared to the features extracted based on the DAE. Consequently, it can be confirmed that the statistical consistency of the features extracted using CVAE is improved compared to DAE. Thus, we conclude that the proposed method may be useful in extracting a more accurate feature of GWL fluctuation pattern affected solely by hydraulic characteristics of the aquifer, which would be followed by the improved performance of the previously developed regression model.

A Study on the Hydraulic Factors of Groundwater Level Fluctuation by Region in Jeju Island (제주도 지역별 지하수위 변동 요인에 대한 고찰)

  • Jeong, Jiho;Park, Jaesung;Koh, Eun-hee;Park, Won-bae;Jeong, Jina
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • This study evaluated the hydraulic factors contributing to the decreasing groundwater levels across Jeju island. Time-series data for groundwater level, precipitation, and groundwater usage and information on land use were acquired, and the correlations among them were analyzed to evaluate the causes of the decreasing groundwater. The effects of precipitation and groundwater usage on the fluctuations of groundwater level were quantified using response surface analysis and sensitivity analysis, and methods for groundwater quantity management by region were proposed. The results showed that the rate of groundwater decrease in the western region was larger than that in the eastern region. For the eastern region, the influence of precipitation was large and the rate of decrease in the groundwater level was relatively small. The geological formation of this part of the island and continuous seawater intrusion suggest that although the absolute amount of groundwater extracted for use was large, the decrease in the groundwater level was not seen to be great due to an increase in pressure by seawater intrusion. Overall, precipitation and groundwater usage had the greatest effect on the amount of groundwater in the western region, and thus their data would be most useful for informing groundwater management, whereas other factors (e.g., sea level and the location of the freshwater-seawater transition zone) must be considered when understanding Jeju's eastern region. As the characteristics of groundwater level fluctuations in the eastern and western regions are distinct, an optimal management plan for each region should be proposed to ensure the efficient management of groundwater quantity.

Levee Stability Assessment depending on Level of Inland and Riverside land in Flow State (흐름상태와 제내지 및 제외지의 표고변화에 따른 제방의 파이핑안정성 평가)

  • Kang, Taeun;An, Hyunuk;Kim, Yeonsu;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.269-279
    • /
    • 2015
  • Nowadays, the world has suffered by natural disaster of climate change due to global warming. Korea has also faced with similar situation. To prevent these natural disaster, Four Major River Management has conducted. One of conducted content in Four Major River Management is the levee maintenance which classified into fill-up the inland, levee of reinforcement and so on. These maintenances may make the characteristics of groundwater flow change and affect to the levee safety (piping phenomenon). Therefore, analysis on groundwater fluctuation according to level of riverside and inland should be required. This study focus on levee of Hoe stream, which is connected to Nakdong river, and piping safety factor in the levee analyzed by using pore water pressure. Besides, groundwater fluctuation, which is depended on level of riverside and inland, is simulated by using the SEEP/W (2D ground water model). This simulation considered steady flow and unsteady flow. As a result, piping safety factor increased due to rising the inland level. Piping safety factor of riverside was effected by only river water level. Therefore, external levee factor considering inland level raising and suitable control of river water level is need to increase piping safety factor.

Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River (낙동강 하류 하천구조물 건설 전후의 충적층 지하수위 시계열 특성 비교)

  • Kim, Gyoo-Bum;Cha, Eun-Jee;Jeong, Hae-Geun;Shin, Kyung-Hee
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.105-115
    • /
    • 2013
  • Increasing the river cross-section by barrage construction causes rises in the average river water levels and discharge rates in the rainy season. The time series patterns for groundwater levels measured at 23 riverside monitoring wells along the lower Nakdong River are compared for two cases: before and after water-filling at the Changnyeong-Haman Barrage. Monthly average groundwater levels indicate a distinct increase in groundwater levels in the upstream riverside close to the barrage. River-water level management by barrage gate control in August, during the rainy season, resulted in a 0.1 m decrease in groundwater levels, while water-filling at the barrage in December caused a 1.3 m increase in groundwater levels. The results of hierarchical cluster analysis indicate that seven groundwater monitoring wells and river water levels were in the same group before barrage construction, but that this number increased to 14 after barrage construction. Principal component analysis revealed that the explanation power of two principal components corresponding to river fluctuation, PC1 and PC2, was approximately 82% before barrage construction but decreased to 45% after construction. This finding indicates that the effect of the river level component that contributes to change in groundwater level, decreases after barrage construction; consequently, other factors, including groundwater pumping, become more important. Continuous surveying and monitoring is essential for understanding change in the hydrological environment. Water policy that takes groundwater-surface water interaction into consideration should be established for riverside areas.

Analysis of Water Level Fluctuations according to Groundwater Development and Pumping Duration (지하수 개발 및 양수기간에 따른 수위 변동특성 분석)

  • Kim, Min-Chul;Yang, Sung-Kee;Lee, Jun-ho
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.135-146
    • /
    • 2016
  • This study analyzed fluctuations of ground water level of ground water wells developed in Seongsan watershed of Jeju Island until 2013 using MODFLOW, a numerical analysis model. Ground water level shows greater fluctuations from increase of pump capacity compared to the number of ground water wells. The development of ground water at the top of watershed was found to have direct influence on ground water level. Ground water wells developed until 2013 were used to continue pumping for 50 days, and ground water level of coastal region was reduced below 50% compared to the standard water level. In addition, the range of fluctuation of water level was large in the east coast region, which represents the direction of flow of ground water.

Analysis of Hydraulic Gradient at Coastal Aquifers in Eastern Part of Jeju Island (제주도 동부지역 해안대수층의 조석에 의한 수리경사 변화 연구)

  • Kim, Kue-Young;Shim, Byoung-Ohan;Park, Ki-Hwa;Kim, Tae-Hee;Seong, Hyeon-Jeong;Park, Yun-Seok;Koh, Gi-Won;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Groundwater level changes in coastal aquifers occur due to oceanic tides, where the properties of oceanic tides can be applied to estimate hyadraulic parameters. Hydraulic parameters of coastal aquifers located in eastern part of Jeju island were estimated using the tidal response technique. Groundwater level data from a saltwater intrusion monitoring well system was used which showed tidal effects from 3 to 5 km. The hydraulic gradient was assessed by utilizing the filtering method from 71 consecutive hourly water-level observations. Calculated hydraulic diffusivity ranged from 2.94${\times}10^7m^2d^{-1}$ to 4.36${\times}10^7m^2d^{-1}$ . The hydraulic gradient of the coastal aquifer area was found to be ~$10^{-4}$, whereas the gradient of the area between wells Handong-1 and 2 was found to be ~$10^{-6}$, which is very low comparatively. Analysis of groundwater monitoring data showed that groundwater levels are periodically higher near coastal areas compared to that of inner land areas due to oceanic tide influences. When assessing groundwater flow direction in coastal aquifers it is important to consider tidal fluctuation.

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well (국내 시설농업단지의 수리지질 특성을 고려한 인공함양 민감도 분석 : 수리전도도 및 주입정과 양수정의 이격거리)

  • Choi, Jung Chan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.737-749
    • /
    • 2019
  • In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.

부산시 동래 온천지역의 양수량, 온천수위, 강수량의 관련성 연구

  • 차용훈;함세영;정재열;장성;손건태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.455-458
    • /
    • 2004
  • This study uses time series analyses to evaluate fluctuation of water levels in a geothermal water well due to pumping, in relation to rainfall at Dongrae hot-spring site on the southeastern coast of tile Korean peninsula. The volume of water pumped from the public study wells ranges from 542 to 993 m$^3$/month, and the minimum water level ranged from 35 to 144.7 m during the measured period. Autocorrelation analysis was conducted for the withdrawal rate at the public wells, water levels and rainfall. The autocorrelation of the withdrawal rate shows distinct periodicity with 3 months of lag time, the autocorrelation of rainfall shows weak linearity and short memory with 1 months of lag time, and the autocorrelation of water levels shows weak linearity and short memory with 2 months of lag time. The cross-correlation between the pumping volume and the minimum water level shows a maximum value 1 at a delayed time of 34 months. The cross-correlation between rainfall and the minimum water level shows a maximum value of 0.39 at a delayed time of 32 months.

  • PDF

Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island (딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발)

  • Park, Jaesung;Jeong, Jiho;Jeong, Jina;Kim, Ki-Hong;Shin, Jaehyeon;Lee, Dongyeop;Jeong, Saebom
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.697-723
    • /
    • 2022
  • Data-driven models to predict groundwater levels 30 days in advance were developed for 12 groundwater monitoring stations in the middle-Jeju watershed, Jeju Island. Stacked long short-term memory (stacked-LSTM), a deep learning technique suitable for time series forecasting, was used for model development. Daily time series data from 2001 to 2022 for precipitation, groundwater usage amount, and groundwater level were considered. Various models were proposed that used different combinations of the input data types and varying lengths of previous time series data for each input variable. A general procedure for deep-learning-based model development is suggested based on consideration of the comparative validation results of the tested models. A model using precipitation, groundwater usage amount, and previous groundwater level data as input variables outperformed any model neglecting one or more of these data categories. Using extended sequences of these past data improved the predictions, possibly owing to the long delay time between precipitation and groundwater recharge, which results from the deep groundwater level in Jeju Island. However, limiting the range of considered groundwater usage data that significantly affected the groundwater level fluctuation (rather than using all the groundwater usage data) improved the performance of the predictive model. The developed models can predict the future groundwater level based on the current amount of precipitation and groundwater use. Therefore, the models provide information on the soundness of the aquifer system, which will help to prepare management plans to maintain appropriate groundwater quantities.

Hydrogeologic Parameter Estimation by Using Tidal Method in a Fractured Rock Aquifer (단열암반 대수층에서 조석분석법을 이용한 수리상수 추정)

  • Shim Byoung Ohan;Chung Sang Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • The oceanic tides have an effect on groundwater levels in coastal fractured rock aquifers. The observed groundwater table fluctuations caused by the effective stress through an aquifer are shown as sine curves similar with tidal fluctuation. To estimate a hydrogeologic parameter, tidal method is utilized with groundwater level fluctuations of two monitoring wells. Cross correlation function is used to calculate time lags between observed groundwater levels and tide, and the deeper well shows longer time lag. The storage coefficients calculated by using tidal efficiency and time lag show large differences. The storage coefficients obtained by using time lags are close to the result of slug test, and that of the deeper well shows closer value by slug test. The tidal efficiency is unsatisfied to apply in the tidal method because of an effect of phreatic aquifer and the vertical flow of groundwater through fractured confining bed. This tidal method can be an economical and effective way to define the parameter by considering the location of observation well and hydrogeologic characteristics of a coastal aquifer.