• Title/Summary/Keyword: Groundwater level data

Search Result 327, Processing Time 0.027 seconds

Data-driven Analysis for Developing the Effective Groundwater Management System in Daejeong-Hangyeong Watershed in Jeju Island (제주도 대정-한경 유역 효율적 지하수자원 관리를 위한 자료기반 연구)

  • Lee, Soyeon;Jeong, Jiho;Kim, Minchul;Park, Wonbae;Kim, Yuhan;Park, Jaesung;Park, Heejeong;Park, Gyeongtae;Jeong, Jina
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.373-387
    • /
    • 2021
  • In this study, the impact of clustered groundwater usage facilities and the proper amount of groundwater usage in the Daejeong-Hangyeong watershed of Jeju island were evaluated based on the data-driven analysis methods. As the applied data, groundwater level data; the corresponding precipitation data; the groundwater usage amount data (Jeoji, Geumak, Seogwang, and English-education city facilities) were used. The results show that the Geumak usage facility has a large influence centering on the corresponding location; the Seogwang usage facility affects on the downstream area; the English-education usage facility has a great impact around the upstream of the location; the Jeoji usage facility shows an influence around the up- and down-streams of the location. Overall, the influence of operating the clustered groundwater usage facilities in the watershed is prolonged to approximately 5km. Additionally, the appropriate groundwater usage amount to maintain the groundwater base-level was analyzed corresponding to the precipitation. Considering the recent precipitation pattern, there is a need to limit the current amount of groundwater usage to 80%. With increasing the precipitation by 100mm, additional groundwater development of approximately 1,500m3-1,900m3 would be reasonable. All the results of the developed data-driven estimation model can be used as useful information for sustainable groundwater development in the Daejeong-Hangyeong watershed of Jeju island.

Parametric and Non-parametric Trend Analysis of Groundwater Data Obtained from National Groundwater Monitoring Stations (국가 지하수관측소 지하수위, 전기전도도 및 수온자료에 대한 모수적 및 비모수적 변동 경향성 분석)

  • Lee, Jin-Yong;Yi, Myeong-Jae;Lee, Jae-Myeong;Ahn, Kyoung-Hwan;Won, Jong-Ho;Moon, Sang-Ho;Cho, Min-Joe
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.56-67
    • /
    • 2006
  • Trends of variation in groundwater levels, electrical conductivities and water temperatures obtained from the national groundwater monitoring stations (95 shallow and 169 deep wells) of Korea were evaluated. For the analysis, both parametric (linear regression) and non-parametric (Mann-Kendall test, Sen's test) methods were adopted. Results of linear regression analysis indicated that about 50% of the monitoring wells showed increasing trends of groundwater levels, electrical conductivities, and water temperatures and the others showed decreasing trends. However, the non-parametric analyses with monthly median values revealed that $14.8{\sim}20.0%$ of water levels were decreased, $24.2{\sim}36.9%$ of electrical conductivities were increased, and $27.4{\sim}32.5%$ of water temperatures were increased at a confidence level of 99%. Highly proportions of increasing or decreasing trends were unexpected and they resulted from the relatively short term of data collection (maximum 6 years). Meanwhile, the investigation of groundwater around the national groundwater monitoring stations showed that the decreasing or increasing trends of water levels, electrical conductivities, themselves, didn't indicate directly groundwater hazards such as groundwater depletion or groundwater contamination. Both the values and variation rates (slopes) of water level, electrical conductivity and temperature in the longer period are considered simultaneously. This study is the first comprehensive work in analyzing trends of groundwater data obtained from the national groundwater monitoring stations. Based on this study, the periodical and regular analysis of groundwater data is essentially required to grasp the overall variational trend of groundwater resources in the country.

Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data (자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구)

  • Yoon, Heesung;Kim, Yongcheol;Ha, Kyoochul;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • For the effective management of groundwater resources, it is necessary to predict groundwater level fluctuations in response to rainfall events. In the present study, time series models using artificial neural networks (ANNs) and support vector machines (SVMs) have been developed and applied to groundwater level data from the Gasan, Shingwang, and Cheongseong stations of the National Groundwater Monitoring Network. We designed four types of model according to input structure and compared their performances. The results show that the rainfall input model is not effective, especially for the prediction of groundwater recession behavior; however, the rainfall-groundwater input model is effective for the entire prediction stage, yielding a high model accuracy. Recursive prediction models were also effective, yielding correlation coefficients of 0.75-0.95 with observed values. The prediction errors were highest for Shingwang station, where the cross-correlation coefficient is lowest among the stations. Overall, the model performance of SVM models was slightly higher than that of ANN models for all cases. Assessment of the model parameter uncertainty of the recursive prediction models, using the ratio of errors in the validation stage to that in the calibration stage, showed that the range of the ratio is much narrower for the SVM models than for the ANN models, which implies that the SVM models are more stable and effective for the present case studies.

Analysis of Abnormal Values Obtained from National Groundwater Monitoring Stations (국가지하수 관측소 측정자료의 이상값 분석)

  • Yi Myeong-Jae;Lee Jin-Yong;Kim Gyoo-Bum;Won Jong-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 2005
  • National groundwater monitoring stations have been managed throughout the country by Korea Water Resources Corporation (KOWACO) in order to monitor variations in quantity and quality of groundwater resources. A multi-sensor installed in each monitoring station well measures groundwater level, water temperature and electrical conductivity every six hours and the logged data are automatically transmitted to a host computer in KOWACO. Meanwhile despite regular station inspection and replacement of deteriorate or broken devices, abnormal values or outliers often occur due to intrinsic limitations of automatic monitoring and transmission. Thus prompt recognition and measures to these values are essentially required to reduce disturbance and missing period of the data. In this study, time and frequency of outlier occurrence were analyzed for the water level data obtained from national groundwater monitoring stations within the Han river basin in 2000. The analysis results indicated that the most prominent patterns of the outliers were rapid decline for water level, no variation for temperature and steep decline for electrical conductivity. This study provided a sample criterion for determining the outlier for each parameter.

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

열추적자를 이용한 지하수-하천수 혼합대 연구

  • Kim Gu-Yeong;Jeon Cheol-Min;Kim Tae-Hui;Seong Hyeon-Jeong;O Jun-Ho;Kim Yong-Je;Jeong Jae-Hun;Park Seung-Gi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.277-281
    • /
    • 2006
  • A study on stream-groundwater exchange was performed using head and temperature data of stream water, streambed, and groundwater. Groundwater level and temperature were obtained from multi-depth monitoring wells in small-scale watershed. In the summer time, time series of temperatrue data at streambed and groundwater were monitored for three months. In the winter time, we measured the temperature gradient between stream water and streambed. The observed data showed three typical types of temperature characteristics. First, the temperature of streambed was lower than that of stream water; second, the temperature of streambed and stream water was similar; and last, the temperature of streambed was higher than that of stream water. The interconnections between the stream and the streambed were not homogeneously distributed due to weakly developed sediments and heterogeneous bedrock exposed as bed of the stream. The temperature data may be used in formal solutions of the inverse problems to estimate groundwater flow and hydraulic conductivity.

  • PDF

A Development of Groundwater Level Fluctuations Due To Precipitations and Infiltrations (강우에 의한 지하수위 변동 예측모델의 개발 및 적용)

  • Park, Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2007
  • In this study, a semi-analytical model to address groundwater level fluctuations in response to precipitations and its infiltration is developed through mathematical modeling based on water balance equation. The developed model is applied to a prediction of groundwater level fluctuations in Hongcheon area. The developed model is calibrated through a nonlinear parameter estimator by using daily precipitation rates and groundwater fluctuations data of a same year 2003. The calibrated input parameters are directly applied to the prediction of groundwater fluctuations of year 2004 and the simulated curve successfully mimics the observed. The developed model is also applied to practical problems such as a prediction of a effect of reduced recharge due to surface coverage change and a induced water level reduction. Through this study, we found that recharge to precipitation ratio is not a constant and may be a function of a precipitation pattern.

Relationship between Hydrogeological Characteristics and Subsurface Geology in Central Busan Megacity (부산광역시 도심부 수리지질 특성과 지하지질 발달상태의 관련성)

  • Ryu, Sang-Hun;Hamm, Se-Yeong;Cha, Yong-Hoon;Jang, Seong;Jeong, Jae-Hyeong;Son, Moon;Kim, Ki-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.367-379
    • /
    • 2007
  • This study intended to evaluate hydrogeological characteristics in relation to subsurface geology data obtained from borehole, groundwater level, borehole flowmeter test, and field hydraulic tests. The regression equation of groundwater level (Y) versus ground elevation (X) is expressed by Y=0.75X-7.00 with quite high correlation coefficient of 0.78. Relationship between groundwater level and thickness of landfill, alluvium, and weathered zone results in higher correlation of groundwater level (Y) versus natural log value of weathered tone (A) than other correlations, with the regression equation Y= exp(9.974A)-14.155. The result of groundwater flow measurement in the boreholes indicates that groundwater flows towards between south and southwest, and this approximately agree with regional distribution of groundwater levels.

Saltwater Intrusion Monitoring Evaluation through Automatic Vertical Line Method in a Costal Aquifer of the Eastern Part of Jeju Island (수직 라인 관측시스템을 이용한 제주 동부 해안대수층에서 해수침투 모니터링 평가)

  • Jang, Hojune;Ha, Kyoochul;Hwang, Inuk;Kim, Gee-Pyo;Park, Won-Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Groundwater monitoring is commonly practiced with real-time sensors placed in several depth spots in aquifer. However, this method only provides monitoring data at the point where the sensors are installed. In this study, we developed a vertical line monitoring system (VLMS) that can provide continuous data of groundwater parameters along the vertical depth. The device was installed in a well located on the coast of the eastern part of Jeju island to monitor electrical conductivity, temperature, salinity, pH, dissolved oxygen, and oxidation-reduction potential over approximately 3 months from September 11 to December 3, 2020. The results indicated that the groundwater levels fluctuated with the tidal change of seawater level, and the upper and lower boundaries of the freshwater and saltwater zone in the groundwater were located at below 16 m and 36 m of mean sea level, respectively. There was a large variation in EC values during the high tide and temperature change was the greatest during flow tide. Although further investigation is needed for improvement of the device to obtain more accurate and reliable data, the device has a potential utility to provide fundamental data to understand the seawater intrusion and transport mechanisms in coastal aquifers.

만경강 하천부지의 수리지질학적 특성화 (대수층의 분포파악을 중심으로)

  • 하규철;염병우;김강주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.431-434
    • /
    • 2004
  • To understand the stratigraphy for a hydrogeological setting, borehole logging data are used. The test site is located in Mangyeong-river bank area in Dodeok-dong Jeonju. 11 boreholes are developed to monitor groundwater level and quality. Based on the borehole data, SOLID model is used to get the distribution of each layer.

  • PDF