• Title/Summary/Keyword: Groundwater level data

Search Result 327, Processing Time 0.025 seconds

Analysis of distortion effect of resistivity data due to 3D geometry of fill dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh Seokhoon;Kim Hyoung-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Analysis of Distortion Effect of Resistivity Data Due to 3D Geometry of Fill Dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh, Seok-Hoon;Kim, Hyoung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.211-214
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10 m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Modeling Growth of Canopy Heights and Stem Diameters in Soybeans at Different Groundwater Level (지하 수위가 다른 조건에서 콩의 초장과 경태 모델링)

  • Choi, Jin-Young;Kim, Dong-Hyun;Kwon, Soon-Hong;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.395-404
    • /
    • 2017
  • Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.

The probabilistic drought forecast based on ensemble using improvement of the modified surface water supply index (Modified surface water supply index 개선을 통한 앙상블 기반 확률론적 가뭄전망)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.835-849
    • /
    • 2016
  • Accurate drought outlook and drought monitoring have been preceded recently to mitigate drought damages that further deepen. This study improved the limitations of the previous MSWSI (Modified Surface Water Supply Index) used in Korea and carried out probabilistic drought forecasts based on ensemble technique with the improved MSWSI. This study investigated available hydrometeorological components in Geum river basin and supplemented appropriate components (dam water level, dam release discharge) in addition to the four components (streamflow, groundwater, precipitation, dam inflow) usedin the previous MSWSI to each sub-basin. Although normal distribution was fitted in the previous MSWSI, the most suitable probabilistic distributions to each meteorological component were estimated in this study, including Gumbel distribution for precipitation and streamflow data; 2-parameter log-normal distribution for dam inflow, water level, and release discharge data; 3-parameter log-normal distribution for groundwater. To verify the improved MSWSI results using historical precipitation and streamflow, simulated drought situations were used. Results revealed that the improved MSWSI results were closer to actual drought than previous MSWSI results. The probabilistic forecasts based on ensemble technique with improved MSWSI were performed and evaluated in 2006 and 2014. The accuracy of the improved MSWSI was better than the previous MSWSI. Moreover, the drought index of actual drought was included in ranges of drought forecasts using the improved MSWSI.

DEVELOPMENT OF A WEB-BASED GEO-SPATIAL INFORMATION SYSTEM FOR THE ANALYSIS AND EVALUATION OF SOIL DATA

  • YongGu Jang;SangHoon Lee;HoYun Kang;InJoon Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1396-1403
    • /
    • 2009
  • The Ministry of Construction and Transportation (MOCT) has been constructing a nationwide soil information DB since 2000, as basic data for the construction of 'underground geographical information,' a project under the 2nd National Geo-spatial Information System (NGIS) master plan. The inputted soil information includes not only underground conditions such as the layer depth, type, color, and groundwater level, but also engineering information that can be applied to construction work design, such as on the standard penetration test and the compression test. It is difficult to use this information in soil analysis and design, however, because only the test results are currently available. A web-based geo-spatial information system was developed in this study to facilitate the effective application of the soil information database (DB). First, the space information, layer information, and engineering test information were loaded from the soil information DB in real time, and the earth volume, bearing capacity, and settlement were calculated to develop a web client that will evaluate the ground softness and liquefaction. It seems that the soil information DB can be actively applied to the planning and design of construction works using this system.

  • PDF

A Hydrometeorological Time Series Analysis of Geum River Watershed with GIS Data Considering Climate Change (기후변화를 고려한 GIS 자료 기반의 금강유역 수문기상시계열 특성 분석)

  • Park, Jin-Hyeog;Lee, Geun-Sang;Yang, Jeong-Seok;Kim, Sea-Won
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.39-50
    • /
    • 2012
  • The objective of this study is the quantitative analysis of climate change effects by performing several statistical analyses with hydrometeorological data sets for past 30 years in Geum river watershed. Temperature, precipitation, relative humidity data sets were collected from eight observation stations for 37 years(1973~2009) in Geum river watershed. River level data was collected from Gongju and Gyuam gauge stations for 36 years(1973~2008) considering rating curve credibility problems and future long-term runoff modeling. Annual and seasonal year-to-year variation of hydrometeorological components were analyzed by calculating the average, standard deviation, skewness, and coefficient of variation. The results show precipitation has the strongest variability. Run test, Turning point test, and Anderson Exact test were performed to check if there is randomness in the data sets. Temperature and precipitation data have randomness and relative humidity and river level data have regularity. Groundwater level data has both aspects(randomness and regularity). Linear regression and Mann-Kendal test were performed for trend test. Temperature is increasing yearly and seasonally and precipitation is increasing in summer. Relative humidity is obviously decreasing. The results of this study can be used for the evaluation of the effects of climate change on water resources and the establishment of future water resources management technique development plan.

The Removal Efficacy of Heavy Metals and Total Petroleum Hydrocarbons from Contaminated Soils by Integrated Bio-phytoremediation

  • Lai, Wen-Liang;Lee, Fang-Yin;Chen, Colin S.;Hseu, Zeng-Yei;Kuo, Yau-Lun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.35-44
    • /
    • 2014
  • In this study, the bio-phytoremediation and phytoremediation technologies were applied to the soils contaminated with total petroleum hydrocarbons (TPH) and heavy metals to evaluate the remediation efficacy from May 2012 to December 2013. Poplar (Populus bonatii Levl.) and Sun Hemp (Crotalaria juncea L.) were selected and planted in phytoremediation practice. These plants were also utilized in the bio-phytoremediation practice, with the addition of earthworm (Eisenia fetida) and petroleum-degrading bacteria (Pseudomonos sp. NKNU01). Furthermore, physiological characteristics, such as photosynthesis rate and maximal photochemical yield, of all testing plants were also measured in order to assess their health conditions and tolerance levels in adverse environment. After 20 months of remedial practice, the results showed that bio-phytoremediation practice had a higher rate of TPH removal efficacy at 30-60 cm depth soil than that of phytoremediation. However, inconsistent results were discovered while analyzing the soil at 100 cm depth. The study also showed that the removal efficiency of heavy metals was lower than that of TPH after remediation treatment. The results from test field tissue sample analysis revealed that more Zinc than Chromium was absorbed and accumulated by the tested plants. Plant height measurements of Poplar and Sun Hemp showed that there were insignificant differences of growth between the plants in remediation plots and those in the control plot. Physiological data of Poplar also suggested it has higher tolerance level toward the contaminated soils. These results indicated that the two testing plants were healthy and suitable for this remediation study.

Study on Soil Physico-Chemical Properties Criteria for Improving Ecosystem Services in Urban Parks (도시공원의 생태기능 향상을 위한 토양 이화학적 특성 기준에 대한 연구)

  • Kong, Minjae;Kwon, Taeguen;Kim, Changhyun;Kim, Namchoon;Shin, Yukyung;Ahn, Nanhee;Lee, Sangmin;Son, Jinkwan
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 2020
  • The purpose of this study was to analyze the soil environment of urban neighborhood parks and to use them as basic data for evaluating the ecological functions of urban parks such as groundwater regeneration, flood control, microclimate regulation, adsorption and purification. The landscape design criteria were generally evaluated as advanced, and further monitoring and studies are needed to evaluate the various ecological functions. It is also necessary to improve the phosphoric acid and nitrogen contents, which tended to be low. In addition, continuous monitoring is needed to assess the proper soil environment according to the biological species, and to evaluate the ecological functions. The results of this study can be used to evaluate the groundwater recharge of urban parks. In particular, when the land of the neighboring park is used for various purposes, the level of access of the user may be increased. Therefore, factors that may adversely affect the user's health, such as heavy metals and organic matters, should be selected and selected as management criteria. In addition, follow-up studies considering fertilization standards suitable for trees and growth of introduced vegetation, etc. are needed urgently to improve the soil environment.

Construction of Hydrogeological Model for KURT Site Based on Geological Model (KURT 연구지역에서 지질모델을 이용한 수리지질모델의 구축)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • The KURT (KAERI Underground Research Tunnel) is a research tunnel which is located in KAERI (Korea Atomic Energy Research Institute) site. At KURT, researches on engineering and natural barrier system, which are the most important components for geological disposal system for high level radioactive waste, have been conducted. In this study, we synthesized the site characteristics obtained by various types of site investigation to introduce the geological model for KURT site, and induced the 3-D hydrogeological model for KURT site from the geological model. From the geological investigation at the surface and boreholes, four geological elements such as subsurface weathered zone, upper fractured rock, lower fractured rock and fracture zones were determined for the geological model. In addition, the geometries of these geological elements were also analyzed for the geological model to be three-dimensional. The results from 3-D geological model were used to construct the hydro-geological model for KURT site, which is one of the input data for groundwater flow modeling and safety assessment.

Environmentally Sound Land Use Planing in Cheju Island, Korea (제주도 중산간 지역의 환경보전적 토지 이용 계획)

  • 양하백
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.11a
    • /
    • pp.145-159
    • /
    • 1997
  • Cheju Island is the most attractive resort area in Korea for its exotic landscape, natural beauty, and traditional culture which is quite different from that of the mainland. Until now, most of the recreational facilities and accomodations have been constructed along the coastal areas. Recently, mid-mountain area has been under very heavy development pressure because it is suitable for new sites for tourism facilities and the land price in the coastal area is very high. The mid-mountain area is the land located 200-600m above the sea level. It is a major source of water supply for the island and has exotic scenic beauty, which cannot be found in mainland but it is the area very vulnerable to water pollution Therefore, it is very important to manage this area based on the concept of environmentally sound and sustainable development in order to meet ever increasing demand for the land development The purposes of this project are: 1) to establish Geographic Information System for the whole island, 2)to formulate environmentally sound landuse plat However, There has been accuracy of the original map, defining criteria of analysis, updating of the data were identified for future tasks to be studied.

  • PDF