• Title/Summary/Keyword: Groundwater level change

Search Result 216, Processing Time 0.027 seconds

Logistic Regression and GIS based Urban Ground Sink Susceptibility Assessment Considering Soil Particle Loss (토립자 유실을 고려한 로지스틱 회귀분석 및 GIS 기반 도시 지반함몰 취약성 평가)

  • Suh, Jangwon;Ryu, Dong-Woo;Yum, Byoung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.149-163
    • /
    • 2020
  • This paper presents a logistic regression and GIS based urban ground sink susceptibility assessment using underground facility information considering soil particle loss. In the underground environment, the particle loss due to water flow or groundwater level change leads to the occurrence and expansion of cavities, which directly affect the ground sink. Four different contributory factors were selected according to the two underground facility domains (water pipeline area, sewer pipeline area) and subway line area. The logistic regression method was used to analyze the correlation and to derive the regression equation between the ground sink inventory and the contributory factors. Based on these results, three ground sink susceptibility maps were generated. The results obtained from this study are expected to provide basic data on the area susceptible to ground sink and needed to safety monitoring.

Rapid Measurement of VOC Using an Analysis of Soil-Gas (Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정)

  • 김희경;조성용;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 1998
  • This paper presents soil-gas surveying technique to delineate an area contaminated with volatile organic compounds, which are common solvents and constituents of gasoline. The sampling method of soil-gas surveying is 1) grab sampling, which actively takes sample using a pump, or 2) passive sampling, which takes sample through diffusion in a trap filled with absorbent. The grab sampling shows the level of contamination at a certain location at a certain time, while the passive sampling shows the change in the contamination at a certain location. The analysis of soil gas can be performed with 1) a small portable detectors such as PID (photoionization detector) or FID (flame-ionization detector) to measure the total hydrocarbon in the soil gas, 2) a gas detector tube, which is filled with indicator reagents and changes its color with concentrations of the gas of interest, or 3) a portable GC (gas chromatograph), which can analyze different compounds simultaneously. The soil-gas surveying technique is a much less expensive method to investigate area contaminated volatile organic compounds and thus can be used as a screening tool to identify an area, which needs to be further investigated.

  • PDF

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

Assessment of Climate Change Impact on Groundwater Level Behavior in Geum River Basin using SWAT (SWAT을 이용한 기후변화에 따른 금강유역의 지하수위 거동 평가)

  • Lee, Ji Wan;Jung, Chung Gil;Kim, Da Rae;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.84-84
    • /
    • 2017
  • IPCC 4차 보고서(2007)에 따르면, 미래 기후변화로 인한 가장 취약한 부분으로 강수패턴의 시 공간 변화로 인한 가용 수자원의 변화를 선정하였으며 IPCC 5차 보고서(2014)는 특히 아시아지역은 지역별 대처전략수립, 물 재활용 등 수자원 다양화, 통합형 수자원 관리를 권고하였다. 지하수의 변화와 같이 흐름속도가 느리고 지속적인 요소의 경우에는 지표 기후변화의 영향을 쉽게 인식할 수 없으나 지표변화에 따른 변동이 지하수 환경에서 관측되기 시작하면 그 영향은 지표보다 훨씬 장기적으로 나타남에 따라 미래 기후변화에 따른 수자원의 효율적 관리를 위해서 지하수 거동에 대한 분석이 요구된다. 따라서 본 연구에서는 금강유역($9,865km^2$)을 대상으로 SWAT(Soil and Water Assessment Tool)을 이용하여 지표수와 지하수의 상호작용에 의한 물수지 분석을 수행하고, 기후변화에 따른 지하수 거동을 평가하였다. 유역의 물수지 분석을 위해 금강유역을 표준유역 단위로 구분하고, 기상자료, 다목적댐(대청댐, 용담댐)과 다기능보(공주보, 백제보, 세종보) 운영자료와, 국가지하수정보센터에서 관측 및 관리하고 있는 지하수위 관측 자료를 수집하였다. SWAT 모형의 신뢰성 있는 유출량 보정을 위해 금강유역 내 위치하는 다목적댐 및 다기능보의 실측 방류량을 이용하여 댐 운영모의를 고려하였고, 실측 지하수위, 토양수분 자료를 이용하여 모형의 보정(2005~2009)과 검증(2010~2015)을 실시하였다. 기후변화에 따른 지하수 거동 분석을 위해 기후변화 시나리오는 기상청의 HadGEM3-RA RCP 4.5와 8.5 시나리오를 적용하였으며, 기준년(1975-2005)년에 대해 2020s(2010-2039), 2050s(2040-2069), 2080s(2070-2099)의 지하수위 거동을 분석하였다.

  • PDF

Analysis of the effects of the seawater intrusion countermeasures considering future sea level rise in Yeosu region using SEAWAT (SEAWAT을 이용한 미래 해수면 상승에 따른 여수지역 해수침투 저감 대책 효과 분석)

  • Yang, Jeong-Seok;Lee, Jae-Beom;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.515-521
    • /
    • 2018
  • Seawater intrusion areas were calculated in Yeosu region considering sea level rise and the effects of countermeasures for seawater intrusion were analyzed using SEAWAT program. The estimated seawater intrusion area was $14.90km^2$ in 2015. When we applied climate change scenarios the area was changed to $19.19km^2$ for RCP 4.5 and $20.43km^2$ for RCP 8.5 respectively. The mitigation effects by artificial recharge with total $50m^3/d$, $100m^3/d$, and $300m^3/d$ are from 3.75% to 10.68% for RCP 4.5, and from 5.82% to 10.77% for RCP 8.5 respectively. If we install barrier wall with the thickness 0.8 m, 1.3 m, and 1.8 m, the mitigation effects are from 6.67% to 12.04% for RCP 4.5, and from 6.17% to 14.98% for RCP 8.5 respectively. The results of this study can be used to be a logical means of quantitative grounds for policy decisions to prevent groundwater contamination by seawater intrusion and subsequent secondary damage in coastal areas.

Changes in Hydrological Characteristics of a Forested Watershed of Mt. Palgong (팔공산 산림소유역의 유출 특성 변화)

  • Jung, Yu-Gyeong;Lee, Ki-Hwan;Choi, Hyung-Tae;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study we quantified the long-term change in discharge against precipitation in a forested watershed and investigated how the growth of forest trees influences these changes. We found a proportional relationship between precipitation and discharge for each year, and discharge decreased gradually with time. Precipitation and discharge were highest in July and August, and the changes in precipitation, discharge, and runoff rate did not always coincide, given that high runoff rate was shown in August and September. The monthly coefficient of variation (CV) for discharge was larger than that for precipitation, and the deviation between precipitation and discharge increased gradually. From 2011 to 2017, the gradient of the trend line for the change of total discharge and direct runoff against precipitation decreased, whereas the gradient of the base flow increased in this same time period. A possible explanation is that the water holding capacity of soil deposits increased as the forest soil of the Palgong Mountain watershed developed and the increase of base flow rose with groundwater level together with that of outflow quantity. The coefficient of flood recession was lower in the period 2011 to 2017 than in 2003 to 2010; thus, the reduction of discharge was mitigated and remained steady as time progressed. We conclude from these results that the discharge of surface runoff decreased as tree growth and base flow increased; however, the water yield function of the forest increased gradually.

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

A Study on the Optimum Design of Horizontal Collectors in Floodplain Filtration (홍수터여과에서 집수관의 최적설계 연구)

  • Pi, Seong-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.430-437
    • /
    • 2012
  • In order to obtain information on the design parameters of the horizontal laterals in floodplain filtration, laboratory-scale sand-box experiments were performed where the head distributions on the laterals and the groundwater profiles were measured according to the change in parameters including lateral diameter, hydraulic conductivity of the sand, water level at the well and raw-water supply rate. Measured data were analyzed using a numerical code in order to identify the discharge intensity distribution along the laterals. It was observed from the result that the lowering of the water level at the well had minimal adverse effect on the performance of the floodplain filtration. Results also elucidated that the low conveyance of the laterals to transmit the filtrate was compensated and supplemented by a natural augmentation in horizontal conveyance through the aquifer when the raw-water supply rate exceeded the adequate recovery rate. With this mechanism, the water quality is expected to improve further since the travel distance through the aquifer is amplified. Based on these findings it can be suggested that the diameter of the lateral used in the floodplain filtration may be smaller than those in riverbank/bed filtration. It was also found that the ratio between the head loss occurring in a lateral and the total head loss in the floodplain filtration was proportional to the exit velocities of the laterals, which may be used to design and/or evaluate the lateral in floodplain filtration.