• Title/Summary/Keyword: Groundwater injection test

Search Result 79, Processing Time 0.027 seconds

A Study on the Infiltration Porperties of Cement Grout Material (시멘트계 주입재의 침투특성에 관한 실험적 연구)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

Feasibility of Streaming Potential Signal on Estimation of Solute Transport Characteristics

  • Kabir, Mohammad Lutful;Ji, Sung- Hoon;Lee, Jin-Yong;Koh, Yong- Kwon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • The drag of the excess charge in an electrical double layer at the solid fluid interface due to water flow induces the streaming current, i.e., the streaming potential (SP). Here we introduce a sandbox experiment to study this hydroelectric coupling in case of a tracer test. An acrylic tank was filled up with homogeneous sand as a sand aquifer, and the upstream and downstream reservoirs were connected to the sand aquifer to control the hydraulic gradient. Under a steady-state water flow condition, a tracer test was performed in the sandbox with the help of peristaltic pump, and tracer samples were collected from the same interval of five screened wells in the sandbox. During the tracer test, SP signals resulting from the distribution of 20 nonpolarizable electrodes were measured at the top of the tank by a multichannel meter. The results showed that there were changes in the observed SP after injection of tracer, which indicated that the SP was likely to be related to the solute transport.

현장 Single Well Push-Pull 실험을 통한 탈질산화반응 각 단계의 반응속도 측정

  • Yeong, Kim;Jin Hun, Kim;Bong Ho, Son;Seong Uk, Eo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • Quantifying rates of microbial processes under subsurface conditions is difficult, and is most commonly approximated by laboratory studies using aquifer materials. In this study a single-well, 'push-pull' test method is adapted for the in situ determination of denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests at an experimental well field of Korea University. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifyinc microorganisms. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate '||'&'||'gt; nitrite '||'&'||'gt; nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibi1ity assessments for in situ denitrification in nitrate-contaminated aquifers.

  • PDF

Properties of the variations of volumetric water content on the saturated/unsaturated media by water-level fluctuations (수위변동에 따른 포화/불포화 매질의 체적함수비 변화 특성 평가)

  • Kim, Man-Il;Lim, Heon-Tae;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1076-1082
    • /
    • 2006
  • This study measured the change of media properties using Time domain Reflectometry (TDR) and Tensionmeter (TM) to measure volumetric water content of soil affecting in land subsidence and pollutant diffusion under saturation/unsaturated condition by water-level fluctuations. Also, actual water content compared their changes aspect by dry oven test for quantitative determinations of these measured values. In the case of TM, initial unsaturated condition confirmed that range in dimension of each other different according to their establishment depth, but measured values of TM can know that is shown measured value in almost similar measuring range under drain condition after the first injection. Also, the results of TDR showed that can measure enough change of volumetric water content in saturation/unsaturated condition by water-level fluctuations. Therefore, we are judged that TDR measurement equipment is very effective to measure the variations of volumetric water content and water-level being caused in groundwater level fluctuations.

  • PDF

A Study on the Durability and Environmentally Friendly of Inorganic Grouting Material (무기질계 지반주입재의 내구성 및 친환경적 특성에 관한 연구)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Inorganic injection material, which is one of the ground improvement materials, consists of cement accelerator and inorganic micro particle. The inorganic injection material is known to overcome the major limitations of water glass type improvement materials, which are leaching and accompanying strength loss. The inorganic injection material is superior in durability and strength, and environmentally friendly since leaching is prevented. In this study, the effectiveness and environment-friendliness of the MIS(Micro Injection-process System) using the inorganic injection material is compared to SGR, which uses the water glass. The performed tests were unconfined compression test, chemical resistance test, and fish poison test. The unconfined compression tests showed that the MIS results in 1.7 times higher 28 day strength compared to the SGR. In addition, the strength continually increased with time for the MIS, while it decreased for the SGR. The chemical resistance tests indicated that the rate of change in length using the MIS is 10~25 times smaller than when using the SGR. The fish poison test proved that MIS was more environmentally friendly. The analysis of chemical ingredients of leached showed that the amount of $Cr^{6+}$, Pb and Si leached from the MIS is less compared to the SGR. Accordingly, the MIS grout is more high-strength than existing SGR grout. It is excellent in shortening of construction period, structural stability of foundation and environmentally friendly. So, it is considered that it has not little the problem about groundwater pollution.

  • PDF

A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test (복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구)

  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

A Study on Hydrogeologic, Hydrodispersive Characterization and Groundwater Contamination Assessment of an H-site (H 연구지역의 수리지질-수리분산특성과 지하수 오염가능성 평가연구)

  • Hahn, Jeongsang
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.295-311
    • /
    • 1994
  • A comprehensive in-situ tests are performed to define the hydrogeologic and hydrodispersive characteristics such as hydraulic conductivities, longitudinal dispersivity, and average linear velocities as well as conducting flow-net analysis at the study area. The results show that the study area is very heterogeneous so that hydraulic conductivities range from $6.45{\times}10^{-7}$ to $1.15{\times}10^{-5}m/s$ with average linear velocities of 0.34~0.62m/day. Whole groundwater in upper-most aquifer is discharging into the sea with specific discharge rate of $7.2{\times}10^{-3}$ to $1.3{\times}10^{-2}m/day$. The longitudinal dispersivity of the aquifer is estimated about 4.8m through In-situ injection phase test. The area is highly vulnerable to potential contaminant sources due to it's high value of DRASTIC index ranging from 139 to 155 and also under water table condition with very shallow groundwater level. To delineate contaminant plumes of toxic NaOH and carcinogenic benzene when these substances are assumed to be leaked through existing TSDF at the study area by unexpected accidents or spill, Aquifer Simulation Model (ASM) including Flow and Transport Model is used. Te simulated results reveal that the size of NaOH plume after 5 years continuous leak is about $250{\times}100m$ and benzene after 10 years, $490{\times}100m$. When the groundwater is abstracted about 50 days, which is maximum continuously sustained no-precipitation period during 30 years, with pumping rate of $100m^3/day$, THWELL program shows that the groundwater is adversly affected by sea water intrusion.

  • PDF

Simultaneous Determiniation of Ar/$N_2$Ratios in Groundwater (지하수에 용해된 질소, 아르곤 가스의 동시측정)

  • Kim, Euisik;Roy F. Spalding
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 1994
  • Previously reported Ar/N$_2$ratios in groundwater have been measured by single ion monitoring (Barnes et al., 1975; Vogel et al., 1981; Mariotti et al., 1988). The detector geometry and flared flight tube in VG Optima isotopic ratio mass spectrometer appeared to be fortuitously aligned for the simultaneous measurement of Ar/N$_2$ratios. Method development included mechanical adjustments to optimize the mass spectrometer for Ar/N$_2$ratio measurements followed by development of a preparation system for the extraction of air-saturated water samples. Samples containing known Ar/N$_2$ratios were used to assess accuracy and precision, and to test the applicability of methods for measurements of aqueous Ar/N$_2$ratios. The results indicated that the prepared air-saturated water samples were almost identical to the predicted Ar/N$_2$ratios (p <0.001). Groundwater samples were collected from on-going research sites, Shelton and Grand Island, Nebraska. Samples from the Grand Island sludge injection site form a lower boundary for worldwide reported Ar/N$_2$ratios. These lower Ar/N$_2$ratios can be explained by the production of nitrogen gas from this site, where denitrification was reported previously.

  • PDF

Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media (균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토)

  • Hyeon Woo Go;Jin Chul Joo;Kyoungphile Nam;Hee Sun Moon;Sung Hee Yoon;Dong Hwi Lee;So Ye Jang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • In this study, column tests using relatively uniform Jumunjin sand media were conducted to evaluate the feasibility of calcium polysulfide (CaSx, CPS) in removing high concentration of Zn2+ in groundwater. The injected CPS solution reacted rapidly with Zn2+ in artificial groundwater and effectively reduced Zn2+ by more than 99% through metal sulfide precipitation. Since the density (d = 1.27 g/cm3 ) of CPS solution was greater than that of water, CPS solution settled down rapidly while capturing Zn2+ and formed stable CPS layer similar to dense nonaqueous phase liquid. Mass balance analysis on Zn2+ in CPS solution suggested that CPS solution effectively reacted with Zn2+ to form metal sulfide precipitates except for high groundwater seepage velocity of 400 cm/d. With greater groundwater seepage velocity, injected CPS did not completely dissolve at the CPS-water interface, but a partially-misible CPS layer continuously moved and reacted with Zn2++ in the direction of groundwater flow. Since hydraulic conductivity (Kh) decreased slightly due to the generated metal precipitates in the inter-pores of media, injection of CPS solution should be optimized to prevent clogging. As evidenced by both XRF and SEM/EDS results, ZnS precipitates were clearly observed through the reaction between the CPS solution and Zn2+. Further study is warranted to evaluate the feasibility of CPS to remove high-concentration heavy metalcontaminated groundwater in complex and heterogeneous media.

Applicability of the Multi-Channel Surface-soil CO2-concentration Monitoring (SCM) System as a Surface Soil CO2 Monitoring Tool (다채널 지표토양 CO2 농도 모니터링(SCM) 시스템 개발 및 적용성 평가 연구)

  • Sung, Ki-Sung;Yu, Soonyoung;Choi, Byoung-Young;Park, Jinyoung;Han, Raehee;Kim, Jeong-Chan;Park, Kwon Gyu;Chae, Gitak
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • Monitoring of $CO_2$ release through the ground surface is essential to confirm the safety of carbon storage projects. We conducted a feasibility study of the multi-channel surface-soil $CO_2$-concentration monitoring (SCM) system as a soil $CO_2$ monitoring tool with a small scale injection test. The background concentrations showed the distinct diurnal variation. The negative relation of $CO_2$ with temperature and the low $CO_2$ concentrations during the day imply that surface-soil $CO_2$ depends on photosynthesis and respiration. After 4.2 kg of $CO_2$ injection (1 m depth for 29 minutes), surface-soil $CO_2$ concentrations increased in the all five chambers, which were located less than 2.8 m of distance from each other. The $CO_2$ concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data from Chamber 2 and 5 with low increase rates were used for statistical analyses. Coefficient of variation for 30 minutes ($CV_{30min}$.) is efficient to determine a leakage signal, with reflecting the fast change in $CO_2$ concentrations. Consequently, SCM and $CV_{30min}$ could be applied for an efficient monitoring tool to detect $CO_2$ release through the ground surface. Also, this study provides ideas for establishing action steps after leakage detection.