• Title/Summary/Keyword: Groundwater base level

Search Result 25, Processing Time 0.024 seconds

Variation of Groundwater Level and Recharge Volume in Jeju Island (제주도 지하수위의 변화와 지하수 함양부피)

  • Park, Won-Bea;Kim, Gee-Pyo;Lee, Joon-Ho;Moon, Duk-Chul;Kim, Soo-Jeong;Koh, Gi-Won;Pang, Sung-Jun;Pang, Ig-Chan
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.857-872
    • /
    • 2011
  • The variation of groundwater level in Jeju Island is analyzed with the data of precipitation observed from 48 monitoring post and groundwater level observed from 84 monitoring wells during 2001 to 2009. The groundwater level rises in summer and falls in winter. The rise of groundwater level by precipitation is fast and small in the eastern region and slow and large in the western region. However, the speed of fall during the period of no rain is slower in the eastern region than in the western region. It tells that permeability is greater in the eastern region than in the western region. In this paper, we set up the base level of groundwater and calculate recharge volume between the base level and groundwater surface. During the period, the average recharge volume was $9.83{\times}10^9m^3$ and the maximum recharge volume was $2.667{\times}10^{10}m^3$ after the typhoon Nari. With these volume and the recharge masses obtained by applying the recharge ratio of 46.1%, estimated by Jeju Province (2003), the porous ratio over the whole Jeju Island is 16.8% in average and 4.6% in the case of maximum recharge volume just after typhoon Nari. A large difference in the two ratios is because that it takes time for groundwater permeated through the ground just after rain fall to fill up the empty porous part. Although the porous ratios over the whole Jeju Island obtained in this way has a large error, they give us the advantage to roughly estimate the amount of recharged groundwater mass directly from observing the groundwater level.

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

Implementation user interface of groundwater well base on the analysis pattern of object-oriented (객체지향 유형적 분석에 의한 지하수 관정 인터페이스 구현)

  • 박민식;장진수;이재봉
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.4
    • /
    • pp.461-470
    • /
    • 2004
  • This paper is to design the user interface of the groundwater well based on an object oriented. In order to implementation geographic data base of the an complex geo-object of the real world, this paper is the study of analysis pattern at the level By specifying the pattern appropriate to the application domain and designing the analysis pattern using the UML based on the object oriented methodology, this paper shall contribute to enhance the reuse of components that can develop and distribute a large scale open system.

  • PDF

The Characteristics on the Groundwater Level Change and Rainfall-Runoff in Moojechi Bog (무제치늪 지역의 지하수위 변동과 강우의 유출 특성)

  • 이헌호;김재훈
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.239-248
    • /
    • 2002
  • This study was conducted to investigate the hydrological characteristics of groundwater level change and rainfall-runoff processes at the Moojechi Bog located in Mt. Jeungjok, Ulsan. The average runoff rate of bog was 0.58 which is similar to that of general mountainous watershed. In the short term hydrograph, runoff was increased slowly and It took a long time to arrive peak flow. After that time, the decreasing pattern of runoff was slower than that of general mountainous watershed. In case of the long term water budget, the Moojechi Bog had a abundant base flow and runoff was continued in spite of non rainfall period. The groundwater level was arrived peak flow immediately after rain stop but was decreased very slowly until the next rain. The change pattern of long term groundwater level was very similar to that of the amount of rain and discharge. The higher rainfall intensity was, the lower slope of recession curve on the groundwater level was and the longer rainfall duration was, the longer peak flow was. Judging from these results, Moojechi bog could be evaluated to have a constant groundwater level.

A Study on TOPMODEL Simulation for Soil Moisture Variation (TOPMODEL의 토양수분 변동성 모의에 관한 연구)

  • Kim, Jin-Hun;Bae, Deok-Hyo;Jang, Gi-Hyo;Jo, Cheon-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The objectives of this study are to analyse model-based soil moisture variations depending on model parameters m and $T_0$ and to evaluate the model performance for the simulation of soil moisture variations by the comparison of observed groundwater levels and model-driven soil moisture amounts and observed and simulated river discharges at the basin outlet. The selected study area is the Pyungchang IHP river basin with outlet at Sanganmi station and the summer flooding events during '94-'98 are used for the analysis. As a result, soil moisture holding capacity is increased according to increase the parameter m that represents effective groundwater depth. This phenomenon is especially dominant when higher m and $T_0$ values are used. The qualitative comparison of computed base flow and observed groundwater level shows that the base flow peaks are reasonably simulated and the decreasing limbs of hydrograph are mainly caused by base flows. It is concluded that TOPMODEL can be used effectively for simulating basin-averaged soil moisture variations in addition to river flow generations.

Formation Processes of Myeonsan Wetland in Bongwa (봉화 면산습지의 형성과정)

  • Son, Myoung Won;Baek, Chung-Yeol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Aiming to elucidate the formation processes of Myeonsan wetland around the ridge from Myeonsan peak to Seokgae pass, this paper analyzes the geomorphic, physical and chemical characteristics of the wetland. The results are as follow: Firstly, resistant bedrock and big boulders distributed on the riverbed of the small channel from the wetland to Seokgaecheon have played a role as a temporary base level. At the upstream part above this point, a wide and shallow depression was formed and developed into a wetland. There was a gorge covered with boulders at downstream part. Secondly, owing to the obstacles at the outlet of wetland, deposits on bed tend to be downstream coarsening. Finally, deposits show weak acidity of pH 5.0~5.7. The source of wetland water is groundwater containing rich Ca and Na. Trees in the wetland help much more Ca accumulated. And deposit biotite and amphibole contained rich Mg have been weathered in the wetland.

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

Data-driven Analysis for Developing the Effective Groundwater Management System in Daejeong-Hangyeong Watershed in Jeju Island (제주도 대정-한경 유역 효율적 지하수자원 관리를 위한 자료기반 연구)

  • Lee, Soyeon;Jeong, Jiho;Kim, Minchul;Park, Wonbae;Kim, Yuhan;Park, Jaesung;Park, Heejeong;Park, Gyeongtae;Jeong, Jina
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.373-387
    • /
    • 2021
  • In this study, the impact of clustered groundwater usage facilities and the proper amount of groundwater usage in the Daejeong-Hangyeong watershed of Jeju island were evaluated based on the data-driven analysis methods. As the applied data, groundwater level data; the corresponding precipitation data; the groundwater usage amount data (Jeoji, Geumak, Seogwang, and English-education city facilities) were used. The results show that the Geumak usage facility has a large influence centering on the corresponding location; the Seogwang usage facility affects on the downstream area; the English-education usage facility has a great impact around the upstream of the location; the Jeoji usage facility shows an influence around the up- and down-streams of the location. Overall, the influence of operating the clustered groundwater usage facilities in the watershed is prolonged to approximately 5km. Additionally, the appropriate groundwater usage amount to maintain the groundwater base-level was analyzed corresponding to the precipitation. Considering the recent precipitation pattern, there is a need to limit the current amount of groundwater usage to 80%. With increasing the precipitation by 100mm, additional groundwater development of approximately 1,500m3-1,900m3 would be reasonable. All the results of the developed data-driven estimation model can be used as useful information for sustainable groundwater development in the Daejeong-Hangyeong watershed of Jeju island.

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

Characteristics of the Rainfall-Runoff and Groundwater Level Change at Milbot Bog located in Mt.Cheonseong (천성산 밀밭늪의 강우 유출 및 지하수위 변동 특성)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.559-567
    • /
    • 2010
  • This study was conducted to investigate the hydrological characteristics of groundwater level change and rainfall hydrological runoff processes caused by tunnel construction at Milbot bog located in Mt. Cheonseong. Data were collected from July 2004 to May 2008. The results were summarized as follows: The occurrence time of the direct runoff caused by unit rainfall at the Milbot bog were tended to be slower than those at general mountainous basin. Also, runoff did not sensitively respond to amount of rainfall at the most of the long and short term hydrograph. The annual runoff rates from 2004 to 2008 were 0.26, 0.13, 0.16, 0.25 and 0.27, respectively, slightly increased after 2005 regardless of the tunnel construction. Thus, the function of Milbot bog will be weakened, and it supposed to be changed to land in the future because of increasing annual runoff. The annual runoff rate for 4 years was 0.19, which is greatly lower than that of general mountainous basin. The recession coefficient of the direct runoff in short term hydrograph was ranged to 0.89~0.97, which is much larger than that of the general mountainous basin, 0.2~0.8. The recession coefficient of base flow ranged from 0.93 to 0.99, which are similar to general mountainous watershed's values. Groundwater level of Milbot bog increased or decreased in proportion to rainfall intensity, and in the descending time after the groundwater level was reached at peak point, it tends to be decreased very slowly. Also, groundwater level increased or decreased maintaining relatively high value after precedent rainfall. Groundwater level was highest during summer with heavy rainfall, but was lowest during winter. Average groundwater levels decreased annually from 2004 to 2008, -8.48 cm, -14.60 cm, -20.46 cm, -20.11 cm, -28.59 cm, respectively. Therefore, it seems that the Milbot bog is becoming dry and losing its function as a bog.