• Title/Summary/Keyword: Groundwater age

Search Result 47, Processing Time 0.025 seconds

Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System (편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링)

  • 정찬호;김천수;김통권;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

A Review on the Paleoclimate Change Inferred from Borehole Temperatures (시추공 온도자료를 이용한 고기후 연구에 대한 개관)

  • Lee, Youngmin;Kim, Hyoung-Chan;Song, Yoonho
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.95-102
    • /
    • 2006
  • To properly interpret and define climatic warming trends of the last $100\~150$ years.; climatic changes over the past several centuries must be constrained. High resolution surface air temperatures (SATs) to reconstruct global temperature trends extend back only to the late of 19th century. Fortunately, on long time scale and over large areas, ground surface temperatures (GSTs) track SATs. GST changes penetrate into the subsurface and are recorded as transient temperature perturbation. Therefore, borehole temperatures can be used to recover climate change over the last millennium in an area; paleoclimate change inferred from borehole temperatures can be used to interpret global warming over the last century, little ice age, and medieval warm period.

오염토양 정화의 비용편익분석 -독일 오스나부릭 도시 사례-

  • 강동규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.20-24
    • /
    • 2004
  • The aim of this study was to analyse the cost-benefit-ratio of a soil remediation project. The target of the study was the 'Altablagerung Osnabrueck-Wueste' the largest inhabited former landfill site in Germany. The determination of benefit resulting from the soil remediation was quantified with the help of willingness-to-pay(WTP) analysis (contingent valuation method, CVM). 400 households participated in the survey. The average WTP was 6.5 Euro per household per month or 78 Euro per house-hold per year. The projected benefit generated by the remediation (consumer value) for the population in the landfill area was determined to be 0.7 million Euro per year. Factors which influence the will-ingness to pay were evaluated. The most important factors were age, garden use and the prevailing concern about personal health. A computation of the cost-benefit relationship was made on the basis of three different scenarios, which differed in terms of the projected benefits. Finally the economical efficiency of the project was determined. With a projection of 18 years and upwards the remediation of the soil is economically worthwhile.

  • PDF

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

Health Status Based on Questionnaire Survey Among Residents Around Camp Carroll, Gyeongsangbuk-do, Korea (설문조사에 근거한 캠프 캐럴 인근 주민의 건강수준)

  • Min, Young-Sun;Lim, Hyun-Sul;Lee, Kwan;Park, Sun Ae;Lee, Duk-Hee;Ju, Young-Su;Yang, Wonho;Kim, Geun-Bae;Yu, Seung Do
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.312-321
    • /
    • 2013
  • Objective: In May 2011, an interview with three United States Forces Korea veterans revealed that chemicals believed to be 'Agent Orange' were buried at Camp Carroll (situated in Waegwan, Chilgok-gun, Gyeongsangbuk-do, Korea) in 1978. Many hazardous chemicals, such as perchloroethylene (PCE), trichloroethylene (TCE), and organochlorines were subsequently found in a joint US-ROK environmental investigation, although dioxins or burial evidence related to 'Agent Orange' have been not uncovered. This study was carried out to investigate the relevance of hazardous chemical exposure and health effects of the residents around Camp Carroll. Methods: The authors conducted a health questionnaire survey among residents around Camp Carroll regarding Waegwan groundwater ingestion, length of residence in Waegwan, and physician-diagnosed disease history (such as cancer, hypertension, diabetes and etc.). Logistic regression was performed to identify the associations between hazardous chemical exposure and physician-diagnosed diseases. Results: Among the 5,320 residents, excluding those living outside the Waegwan area, 3,430 subjects age 30 and over were analyzed. Among females, upon correction of age, smoking history and Camp Carroll working history, a higher distribution in the Waegwan groundwater ingestion group was demonstrated for patients with physician-diagnosed cancer and hypertension. The odds ratios have a tendency to increase with increased length of Waegwan groundwater ingestion. Conclusions: This study may be limited by not adopting a cohort study for the evaluation of factors that may confound environmental exposure. Yet it is meaningful that the correlation between Waegwan groundwater ingestion and chronic diseases were found through regression analysis in female; and further, this outcome may be used as a sampling basis for a secondary epidemiologic study.

Risk Assessment of Groundwater and Soil in Sasang Industrial Area in Busan Metropolitan City (부산광역시 사상공단지역의 지하수 및 토양 위해성 평가)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Cheong, Jae-Yeol;Ryu, Sang-Min;Jang, Seong;Lee, Jeong-Hwan;Lee, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The risk assessment of groundwater and soil in Sasang industrial complex in Busan Metropolitan City was carried out in order to estimate risks to human health and the environment. The carcinogenic risk (CR) of receptors to soil and air was not identified. However, the CRs for TCE and PCE were 6.7E-6 and 1.0E-5, respectively. Hazard quotient (HQ) and hazard index (HI) did not appear through air exposure pathways. Yet the HQ and HI of soil were 3.4E-5 and 5E-5, respectively, and lower than the critical value (1.0). On the contrary, HQ and HI with respect to groundwater were calculated as 0.7 (not hazardous) and 1.4 (hazardous). The constituent reduction factor (CRF) for TCE in the study area was determined as 2.5, and thus remediation work is demanded. As a result of sensitivity analysis for 18 exposure factors, eight exposure factors (life time of carcinogens, age, body weight, exposure duration, exposure frequency, dermal exposure frequency, water ingestion rate, and soil ingestion rate) varied with the variation of risk.

A Study of Carvernous Limestone Aquifer of Jeon Cheon Basin (전천 석회암 대수층에 관한 연구)

  • 한종상
    • Water for future
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 1983
  • In the Jeon Cheon Basin, unconsolidated alluvium and marine clay beds overlying Tertiary conglomerate and impermeable mudstone, and Cambro-Ordovician sedimentary rocks composed of mainly cavernous limestones, and age-unknowned crystalline rocks are occured. Most productive rock is Cambro-Ordovician limestones containing a lot of solution openings and secondary porosities and shows its transmissivity of 1836$m^2$/day and storativity of 1.47 $\times$ $10^{-3}$. The storage of deep seated groundwater in linestone aquifer is estimated about 1059 $\times$ $10^6$ metric tons, being equivalent to 6 years total precipitation of the basin. The safe yield of the groundwater to be abstracted from the aquifer is about 126,000 tons/day. To pump at least 100,000 tons/day of groundwater from the said aquifer, a well field comprising 34 deep wells ranging in depth from 80 to 100 meter and penetrating the cavernous limestone aquifer shall be established at middle and down stream area.

  • PDF

Contaminant Release from and Oxygen Uptake Rate of Landfill Soils of Different Age (비위생매립지 토양의 매립종료기간에 따른 오염특성 및 산소소비율 평가)

  • 신언빈;김종호;배우근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.57-60
    • /
    • 2001
  • 미생물 활성도와 그에 따른 유기물의 분해율은 미생물의 호흡률과 직접적인 관계가 있다. 본 연구는 매립종료후 경과기간이 1년인 Y 매립지와 10년인 C 매립지의 오염특성을 조사하였고, 오염토양 미생물의 산소소비속도를 이용하여 매립종료기간에 따른 오염토양의 산소소비율을 비교 평가 하고자 하였다. C 매립지의 오염토양에 대한 SCO $D_{cr}$ TOC는 Y 매립지에 비해 낮은 함량으로 나타났으나 T-N, N $H_3$-N의 함량은 큰 차이를 보이지 않았다. TOC/T-N비로 보았을 때 Y 매립지에 비해 C 매립지가 낮은 것으로 나타나 연령이 많은 경우 분해성 유기물의 함량은 적은 것으로 판단된다. 산소소비율 실험결과 Y 매립지가 산소소비율이 높은 것으로 나타났으며, C 매립지도 대조토양에 비해 높은 산소소비율을 보였다. 따라서 매립종료 후 경과기간이 10년인 매립지의 미생물의 산소소비율을 보았을 때 여전히 생물학적 안정화가 종료되지 않은 것을 알 수 있었다.

  • PDF