• Title/Summary/Keyword: Groundwater Movement

Search Result 130, Processing Time 0.032 seconds

Groundwater Movement Analysis Using the WINFLOW Model (WINFLOW 모델을 이용한 지하수 유동해석)

  • 최윤영;안승섭;김재광
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.103-115
    • /
    • 2003
  • This study examines groundwater movement system analysis and movement forecast algorithm using finite element method. The target is Cheongha-myeon area, Bukgu, Pohang-city which has many difficulties in water supply during drought period. From the comparison of the differences between obtained values by WINFlOW model and observed values, it is thought that groundwater head distribution under steady flow is reflected well at the level of reliability Groundwater movement of study area shows stable pattern from western watershed to eastern coastal area while flow path is dense and steep in the center of the coastal area. The results of particle tracing for each well show a comparatively straight line from the western boundary side to the observation position at the upper area of the well, and are analyzed as it diffuses according to getting closer to the coast at the lower area of the well. The result of effect circle examination attendant on pumping amount in study area shows variation tendency that groundwater head decreases at the side and the lower area more than at the upper area of the well when groundwater flows from west to east(coast). As mentioned above, satisfactory results of groundwater movement analysis using WINFlOW model, two dimensional groundwater movement analysis model, are obtained through the great decrease of physical uncertainty of groundwater movement system.

Groundwater Characterization according to Hydraulic Conductivity Input Method (수리전도도 적용 방식에 따른 지하수특성 분석)

  • Ahn, Seung-Seop;Park, Dong-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.939-946
    • /
    • 2015
  • Hydraulic conductivity is an important parameter in the analytical model of groundwater. This study analyzed the groundwater movement characteristics by estimating optimal parameters according to hydraulic conductivity input methods with the MODFLOW model which is widely used. It first estimated the optimal parameters by dividing hydraulic conductivity zones by attitude. Next, it estimated optimal parameters by geological characteristic. It analyzed the groundwater movement characteristics by applying the recharge quantity and amount of evapotranspiration of drought periods and flood years with the estimated parameters. As the result was analyzed that there are differences of observation water level values according to hydraulic conductivity input methods but there is no big differences of overall groundwater movement characteristics by hydraulic conductivity input method, the two methods have found to be applicability in analyses of groundwater. So, it is judged that studies on more exact application of hydraulic conductivity and the application methods are needed.

Estimation of the Groundwater Movement Under the Heavyrainfall at Nanji Waste Landfill (집중호우시 발생하는 난지도 매립지내의 지하수 거동)

  • 구태훈;조원철
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.107-117
    • /
    • 2001
  • The characteristics of groundwater movement under the heavy rainfall at Nan-ji waste landfill site are studied using HELP(Hydraulic Evaluation of Landfill Performance) program, which calculates the daily leachate in the Nan-ji waste landfill site. In this study, instead of the average recharge value, which is used in the past study, the real reacharge value is used to calculate the daily leachater. It is found about 70 times greater than thor average recharge value under the condition of heavy rainfall in the rainy season. The flow characteristics of groundwater for water level fluctuation is simulated using the ground water flow model MODFLOW(A Modular 3-D Finite Different Groundwater Flow Model) program, and the slurry layer is newly added. The result of the study is different from that of the ordinary simulation, which shows much higher ground water level than from the ordinary simulation.

  • PDF

기름 유출로 인한 토양 및 지하수의 오염

  • Kim Dong-Jin;Yang Jae-Eui;Yu Jin-Yeol;Kim Hui-Gap;Kim Gi-Dong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.424-427
    • /
    • 2006
  • Soil contamination with petroleum oil around a military army was investigated. It showed that soils of a riverside highland, an entrance of the military army, and nearby roads were contaminated with total petroleum hydrocarbons (TPH) released from the military army to the depth of approximately 2 m. The measured concentrations were as high as 15,277 mg/kg. A wide range of soil in the riverside highland was contaminated by the movement of oil to the surface soil, which occurred with the vertical movement of groundwater table caused by the change of river water level and groundwater level. Spilled petroleum oil components were released into Wonju Stream by the increase of hydraulic conductivity and the groundwater flow.

  • PDF

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.

Analyses on Solute Transport with the Movement of an LNAPL on the Water Table (지하수면 위의 LNAPL 이동을 고려한 용질이동에 대한 분석)

  • 김지훈;최종근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • A modified model was developed for solute transport in porous media that can consider the movement of an LNAPL above the water table. From the results of sensitivity analyses with and without considering LNAPL movement, there are some differences according to the hydraulic gradient, the quantity of oil leakage and dispersivity. The mean deviation between the model in this study and a conventional model without LNAPL movement increases as the hydraulic gradient decreases and the quantity of oil leakage increases. Variation of dispersivity has no influence on the magnitude of the mean deviation. However, the spatial distribution of the deviation between the two models is wider as dispersivity increases. Furthermore, groundwater is at high risk of contamination in the vertical direction in the case that transverse dispersion value is large. A conventional model underestimates the concentration of solute in an aquifer where the movement of an LNAPL cannot be negligible: Based on the study results, it is important to understand how fast the LNAPL moves on the water table for realistic prediction of solute transport in an aquifer with the movable LNAPL on the water table.

제주도 동부해안 한동리지역의 수문지질학적 연구

  • 김기표;윤정수;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study is to understand the high saline water phenomenon of Handong-ri area in the eastern coast of Jeju Island, were investigate the tidal effect of groundwater level, variation of electric conductivity and temperature, geological logging on the monitoring wells, chemical water quality, and ratios of oxygen istope of groundwater and seawater Results in investigating variation of interface zone of freshwater and saline water represented that the hyaloclastites formed at below groundwater table is developing toward the coast; this area consisted of stratum of good permeability. Hyaloclastites is presumed the main path of the high salinity water There are a lot of movement by the tide at upper layer. Salinity of lower layer spreads to upper up step in proportion to tidal energy. Because of hydrogeological characteristics, Interface zone of freshwater and saline water is made, High salinity of groundwater occur in east coastal area of Jeju Island. Therefore, I think that high saline groundwater phenomenon is natural condition by simple mixing.

  • PDF

Groundwater Movement Analysis according to Groundwater-Surface Water Interaction (지표수-지하수 상호관계에 따른 지하수 유동분석)

  • Ahn, Seung-Seop;Park, Dong-Il;Jung, Do-Joon;Seok, Dong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1945-1949
    • /
    • 2009
  • It is fact that many research is advanced about management and security of water resources according to serious problem which is raising its head that conservancy and management of water resources development of population and industry. Ground water of water resources is the source of water resources security with surface water, so it have to be continuous exploitation and research however, until now it researched in separate way from surface water, and it become connect each other for the research in actual condition in recent times. The research analyzed the recharge at the SWAT model, interpreted by used GMS/MODFLOW model for ground water flow change.

  • PDF

A Finite Element Model of Groundwater Contamination at Landfill Site (매립지 지하수 오염물 확산이송의 유한요소 모형)

  • 류병로
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.495-511
    • /
    • 1996
  • The quantitative study of the groundwater contamination in a porous media is a difficult task. For complex problems, numerical solutions are the most effective means to study the movement of contaminants in the groundwater, The solute transport model used in this study has proved to be an efficient tool to model contaminant transport for complex problems. The model demonstrates its effectiveness in reproducing the coniamination by ihlorides of the groundwater at the landfill site due to leachath from the wastes. It describes the two dimentional solute transport and alteration of the water quality and forecasts the contamination for different management alternatives of the landfill. The model also indicates how the groundwater contamination can be contained within the lower site if a barrier is constructed downstream of the disposed wastes.

  • PDF