• Title/Summary/Keyword: Groundwater Chemistry

Search Result 184, Processing Time 0.028 seconds

Geostatistical Interpretation of Water Quality and Hydrogeochemistry of shallow Groundwater in the Uljin Area, Korea (지구통계 기법을 활용한 울진 지역 천부 지하수의 수질 및 수리지구화학 특성 해석)

  • 김남진;윤성택;김형수;정경문;김규범
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.175-192
    • /
    • 2001
  • We have collected hydrogeochemical data of shallow groundwaters in the Uljin area located at eastern coastal area of Korea. Geostatistical analysis (ANOVA test, cluster analysis, and factor analysis) of the collected data sets was pert'onned, in order to evaluate both the spatial and/or temporal variation of water quality data and the groundwater contamination, as weJl as the principal reactions occurring in the aquifer. Results of the ANOVA test show that regional water chemistry are not significantly changed spatially in eight watersheds. However, some ions such as $Ca^{2+}$, $HCO_{3}^{-}$ and $SO_{4}^{2-}$ show a meaningful watershed variation. Water chemistry variation according to sampling time (season) is not shown, except for $SO_{4}^{2-}$. The cluster analysis shows that significant water chemistry variation is eXplained by the distance from the coast. Factor analysis indicates that the water chemistry is changed according to various factors as follows: in the order of decreasing importance, water-rock interaction (mainly, carbonate dissolution), sea-salt spraying, and then contamination by fertilizers and agrochemicals.

  • PDF

제주도 한라산 남북측 사면 용천수의 수리지구화학

  • 이광식;박원배;현승규;김용제;문덕철;김구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.408-412
    • /
    • 2004
  • A total of 23 springs distributed in the southern and northern sides of Mt. Hala in Jeju Island were seasonally sampled and analyzed for their major ion chemistry and oxygen and hydrogen isotope compositions to investigate their hydrogeochemical and isotopic characteristics. Dissolved ion concentrations of the south-side springs slightly increase with decreasing altitude. This indicates that dissolved ion concentrations of groundwater recharged at higher altitudes increase by water-rock interaction during the downgradient migration of groundwater through highly permeable volcanic aquifer. Dissolved ion concentrations of the north-side springs also slightly increase with decreasing altitude, but dramatically increase at ~300 m.a.s.l. This may indicate a sudden input of contaminants to the north-side groundwater system around ~300 m.a.s.l. Springs located in areas above ~300 m.a.s.l. have very low concentrations of dissolved ions, showing little seasonal variations. Whereas springs located in areas below ~300 m.a.s.l. show a big seasonal variation in the concentration of dissolved ions. Seasonal variation of oxygen isotope compositions of springs is ~3$\textperthousand$ for high-altitude springs (~1700 m.a.s.l.) and is ~2$\textperthousand$ near shore, indicating an attenuation of the variation through mixing with other groundwater bodies during migration.

  • PDF

GIS Application to Urban Hydrogeological Analysis of Groundwater System in Seoul Area (서울지역 지하수시스템의 수문지질학적 특성 분석을 위한 지리정보시스템의 활용)

  • 김윤영;이강근
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.103-117
    • /
    • 1999
  • During the last several years, the geographic information system(GIS) technology has emerged as a very effective tool for analyzing complicated groundwater system Linking GIS to spatially distributed hydrogeological data and groundwater models offers many advantages in the analysis of urban groundwater system. This paper describes the urban hydrogeological application of GIS in Seoul area. This study constructs an urban hydrogeological database via pre- and post-processing of various types of urban hydrogeological data, such as groundwater-level fluctuation, topogaphic data, water chemistry data, subway pimping station data, tidal effect of the Han River, and hydrogeological parameters. A hydrogeological model has been designed to enable importing data from the database and providing the model output for the repetitive manipulation and display in GIS.

  • PDF

Application of multivariate statistics towards the geochemical evaluation of fluoride enrichment in groundwater at Shilabati river bank, West Bengal, India

  • Ghosh, Arghya;Mondal, Sandip
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.

Geochemical evaluation of groundwater quality of Peshawar Basin, Pakistan

  • Akhter, Gulraiz;Mand, Bilal A.;Shah, Munir H.
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2021
  • Evaluation of groundwater quality is vital due to its diverse use for several purposes. In the present study, groundwater quality and suitability from the Peshawar basin, Pakistan, were evaluated for drinking and irrigation purposes. The water samples were analysed for major cations (Ca, Mg, Na and K) and anions (chloride, bicarbonate and sulphate) along with other physicochemical parameters (pH, electrical conductivity, total dissolved solids, and total hardness). About 95% of the water samples were found to be within the WHO, US-EPA and Pak-EPA permissible levels for drinking purposes. Seventy percent (70%) of the water samples belonged to the hard water category. Irrigation water quality parameters, such as, chloride, residual sodium bicarbonate, sodium adsorption ratio, percent sodium, magnesium adsorption ratio, Kelly's ration and permeability index were evaluated which demonstrated that the groundwater was highly to moderately suitable for irrigation. A correlation study was conducted to find out the mutual associations among the variables. Piper diagram indicated the overall chemical nature of the study area was calcium-magnesium bicarbonate type. Cluster analysis revealed mutual apportionment of various parameters in the groundwater of the Peshawar basin, Pakistan.

Geochemistuy of the Borehole Groundwater from Volcanic Rocks in the Northeastern Part of Yeosu Area (여수 북동부 화산암 지역 시추공 지하수의 지화학 특성)

  • 고용권;김경수;배대석;김천수;한경원
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.255-269
    • /
    • 2001
  • The geochemical studies on groundwater in the borehole, which is straddled by multi-packer (MP) system, were carried out from a volcanic terrain in the Yeosu area. The pH of groundwater collected from selected sections in the MP-installed borehole is much higher (up to 9.6) than that of the borehole groundwater (7.0-7.9) collected using conventional pumping technique. Hydrochemistry shows that the groundwater has a typical chemical change with increasing sampling depth, suggesting that the groundwater is evolved through water-rock interaction along the fracture-controlled flow paths. The groundwater from the deeper part (138-175 m below the surface) in borehole KI is characterized by the Ca-C11 type with high Ca (up to 160 mg/L) and Cl (up to 293 mg/L) contents, probably reflecting seawater intrusion. The groundwater also has high sodium and sulfate contents compared to the waters from other boreholes. These observed groundwater chemistry is explained by the cation exchange, sulfide oxidation, and mixing process with seawater along the flow path.

  • PDF

문경지역 탄산온천수의 지구화학적 및 동위원소적 특성연구

  • 배대석;최현수;고용권;박맹언;정율필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater in the Munkyeong area, Kyeongbuk province were carried out. $CO_2$-rich groundwater (Ca-HC $O_3$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L), while alkali groundwater (Na-HC $O_3$ type) shows a high pH (9.I~10.4) and relatively low TBS (72~116 mg/L). $CO_2$-rich water may have evolved by $CO_2$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and HC $O_3$ concentrations are enriched. The low Pc $o_2$ (10$^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of $CO_2$. The $\delta$$^{18}$ O and $\delta$D values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water. The carbon Isotope data show that dissolved carbon in the $CO_2$-rich water was possibly derived from deep-seated $CO_2$ gas. The $\delta$$^{18}$ S values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on $CO_2$-rich groundwater shows that the calculated deep reservoir temperature is about 130~175$^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.m.

  • PDF

Monitoring of Endocrine Disruptor-suspected Pesticide Residues in Greenhouse Soils and Evaluation of Their Leachability to Groundwater (시설재배 토양 중 내분비계장애 추정농약의 잔류 모니터링 및 지하수 용탈 가능성)

  • Noh, Hyun-Ho;Lee, Kwang-Hun;Lee, Jae-Yun;Park, Hyo-Kyung;Lee, Eun-Young;Hong, Su-Myung;Park, Young-Soon;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.441-452
    • /
    • 2011
  • This study was carried out to survey the residual characteristics of endocrine disruptor (ED)-suspected pesticides in greenhouse soils and assess their leachabilites to groundwater. Greenhouse soils were collected from 40 sites of greenhouse in 2008 in Korea. Sixteen ED-suspected pesticides which had been using in Korea, such as alachlor, benomyl, carbaryl, cypermethrin, 2,4-D, dicofol, endosulfan, fenvalerate, malathion, mancozeb, metribuzin, metiram, methomyl, parathion, trifluralin, and vinclozolin, in the soils, were analyzed by chromatographic methods using GLC-ECD and HPLC-DAD/FLD. Limits of detection (LODs) of the test pesticides ranged from 0.0004 to 0.005 mg/kg. Recoveries of the target pesticides from soil ranged from 72.69 to 115.28%. Four pesticides including cypermethrin were detected in the range of from 0.001 to 2.019 mg/kg, representing that their detection rate from greenhouse soils was 37.5%. The highest detection rate was observed from endosulfan which was detected from 16 site soils of the total samples, indicating that endosulfan is persistent in soil because of its very low mobility and high adsorption characteristics in soil. Based on the groundwater ubiquity scores (GUSs) of the pesticides detected from greenhouse soils, most of them have little possibilities of groundwater contamination except the fungicide vinclozolin with some leaching potential because of high water solubility and very low soil adsorption property.

A Study on the Laboratory Scale Ultrasound Treatment System for Methyl tert-Butyl Ether Polluted Groundwater (Methyl tert-Butyl Ether 오염 지하수 처리를 위한 실험실 규모 초음파 분해 시스템 연구)

  • Kim, Heeseok;Yang, Inho;Cho, Hyeonjo;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.747-753
    • /
    • 2010
  • A series of experiments with a laboratory scale ultrasound treatment system for MTBE polluted groundwater was performed to increase the efficiency of MTBE degradation in groundwater. This study evaluated several factors to increase the efficiency of MTBE treatment for artificial and natural groundwater. The treated volume of groundwater, ultrasound frequency and power, and pollutant concentrations have been changed to evaluate its effects on the degradation efficiency of MTBE in batch and continuous flow reactor. For the specific experimental conditions on this paper, MTBE degradations are more efficient at 580 kHz than those at 1 MHz. The efficiency of MTBE degradation is proportional to the intensity of ultrasound power per unit volume of MTBE polluted groundwater. The concentration of ions in groundwater does not much affect the efficiency of MTBE degradation. The $1^{st}$ order degradation constant of MTBE for different power per unit volume at 580 kHz shows linear relationship at same concentration. The $1^{st}$ order degradation constant for 0.1 mM MTBE solution is higher than that for 1 mM MTBE solution. These experimental results could be helpful to seek optimal conditions for relatively large volume of polluted groundwater treatment.