• Title/Summary/Keyword: Groundwater - Surface water interaction

Search Result 72, Processing Time 0.027 seconds

Introduction to the Strategic Sampling Approaches to Construct Optimal Conceptual Model of a Contaminated Site (오염부지 최적 개념모델 수립을 위한 전략적 샘플링 기법 소개)

  • Park, Hyun Ji;Kim, Han-Suk;Yun, Seong-Taek;Jo, Ho Young;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.28-54
    • /
    • 2020
  • Even though a systematic sampling approach is very crucial in both the general and detailed investigation phases to produce the best conceptual site model for contaminated sites, the concept is not yet established in South Korea. The U.S. Environmental Protection Agency (EPA) issued the 'Strategic Sampling Approaches Technical guide' in 2018 to help environmental professionals choose which sampling approaches may be needed and most effective for given site conditions. The EPA guide broadly defines strategic sampling as the application of focused data collection across targeted areas of the conceptual site model (CSM) to provide the appropriate amount and type of information needed for decision-making. These strategic sampling approaches can prevent the essential data from missing, minimize the uncertainty of projects and secure the data which are necessary for the important site-decisions. Furthermore, these provide collaborative data sets through the life cycle phases of projects, which can generate more positive proofs on the site-decisions. The strategic sampling approaches can be divided by site conditions. This technical guide categorized it into eight conditions; High-resolution site characterization in unconsolidated environments, High-resolution site characterization in fractured sedimentary rock environments, Incremental sampling, Contaminant source definition, Passive groundwater sampling, Passive sampling for surface water and sediment, Groundwater to surface water interaction, and Vapor intrusion. This commentary paper introduces specific sampling methods based on site conditions when the strategic sampling approaches are applied.

Development of TANK_GS Model to Consider the Interaction between Surface Water and Groundwater (지표수-지하수 상호흐름을 고려한 TANK_GS 모형의 개발)

  • Lee, Woo-Seok;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.893-909
    • /
    • 2010
  • The purpose of this study is to consider the interaction between surface water and groundwater in basin scale by developing TANK_GS model. The soil moisture structure of tank model with 3 tanks is improved to simulate the appropriate stream-aquifer interactions. Maximum likelihood method is applied to calibrate parameters with variance functions to deal with heteroscedasticity of residuals. The parameters of improved TANK_GS model and variance function are simultaneously estimated by Simulated Annealing method, a global optimization technique. The results of TANK-GE are compared to those of the SWMM-GE model which had been developed to consider the stream-aquifer interactions. The new TANK_GS model and SWMM-GE model are applied to Gapcheon basin, which belongs to Geum River basin. TANK_GS model showed better model performance compared to the original TANK model and characterized the relationship of stream-aquifer interactions as satisfactorily as the SWMM-GE model. The sustainable groundwater yield can be estimated for the regional water resources planning using the TANK_GS model

Geochemical characteristics of a LILW repository I. Groundwater (중.저준위 방사성 폐기물 처분부지의 지구화학 특성 I. 지하수)

  • Choi, Byoung-Young;Kim, Geon-Young;Koh, Yong-Kwon;Shin, Seon-Ho;Yoo, Si-Won;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • This study was carried out to identify the characteristics of hydrochemistry controlling groundwater chemical condition in a repository site of Gyeongju. For this study, 12 bore holes of all monitoring bore holes in the study area were selected and total 46 groundwater samples were collected with depth. In addition, 3 surfacewater samples and 1 seawater sample were collected. For water samples, cations and anions were analyzed. The environmental isotopes(${\delta}^{18}O-{\delta}D$, Tritium, ${\delta}^{13}C,\;{\cdot}{\delta}^{34}S$) were also analyzed to trace the origin of water and solutes. The result of ${\delta}^{18}O\;and\;{\delta}D$ analysis showed that surface water and groundwater were originated from precipitation. Tritium concentrations of groundwater decreased with depth but high concentrations of tritium indicated that groundwater was recharged recently. The results of ion and correlation analysis showed that groundwater types of the study area were represented by Ca-Na-$HCO_3$ and Na-Cl-$SO_4$, which was caused by sea spray and water-rock interaction. Especially, high ratio of Na content in groundwater resulted from ion exchange. For redox condition of groundwater, the values of DO and Eh decreased with depth, which indicated that reducing condition was formed in deeper groundwater. In addtion, high concentration of Fe and Mn showed that redox condition of groundwater was controlled by the reduction of Fe and Mn oxides.

  • PDF

Environment isotope aided studies on river water and ground water interaction in the Han River basin (동위원소를 이용한 한강유역의 지하수와 지표수의 연관성에 관한 연구)

  • 안종성;김재성
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.245-252
    • /
    • 1983
  • Recently river water pollution in Korea is given rise to serious problem in aspect of crop production, drinking well, water contamination and etc. Under these urgent situations, it is prime importance to protect water resources from pollutants. An environmental isotope survey of the groundwater form the shallow alluvial and the underlying crystalline rock aquifer of the Han River Basin has been undertaken, Analysis of the data has I) confirmed the hypothesis that the groundwater from the metropolitan area is recharged from the river whereas that form the non-urbanized region of the Basin is replenished by the infiltrating precipitation; ii) shown that crystalline rock aquifers are recharged by the ground water form the overlying alluvium. Old groundwater is a group of wells with tritium values in the range of 0 to 2 TU. These low values indicate that the water sampled was recharged much ealier, at least a few decades, than the other groundwater samples of higher tritium content. The low values in this region may, in fact, reflect the effect of the impermeable clay layers which impede infilteration from the surface. Stable isotope evidence confirmed that a recharge in the karst area occurs at a significantly greater elevation than that to the alluvial aquifer. An analysis of the tritium level collected over an annual cycle suggests that the residence time of groundwater is probably not more than a few months. There does not appear to be any correlation between the trace level of Zn, Mn and Pb in the groundwater and the mechanism of the recharge.

  • PDF

Estimation of Distributed Groundwater Recharge in Jangseong District by using Integrated Hydrologic Model (통합수문모형을 이용한 장성지역의 분포형 지하수 함양량 추정)

  • Chung, Il-Moon;Park, Seunghyuk;Lee, Jeong Eun;Kim, Min Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.517-526
    • /
    • 2018
  • As groundwater recharge shows the heterogeneity in space and time due to land use and soil types, estimating daily recharge by integrated hydrologic analysis is needed. In this work, the SWAT-MODFLOW model was applied to compute daily based groundwater recharge in Jangseong region. The accuracy of the model was evaluated by comparing the observed and calculated values of the unsteady groundwater flow levels after calibrating the observed and calculated flow rates of the stream for a hydrological analysis. The estimated hydrologic components showed a strong correlation with each other and significant spatial variations regarding the groundwater recharge rate in accordance with the heterogeneous watershed characteristics such as subbasin slope, land use, and soil type. Overall, it was concluded that the coupled hydrologic models were capable of simulating the spatial variation with respect to the hydrologic component process in surface water and groundwater. The average recharge rate was estimated at approximately 20.8%.

Urban Excavation - Induced Ground Movement in Water Bearing Ground Using Stress-pore Pressure Coupled Analysis (응력 -간극수압 연계해석을 이용한 흙막이 굴착시 지하수저하에 따른 지반침하에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.17-31
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the behavior of earth retaining wall system with emphasis on the groundwater lowering. Using the 2D stress-pore pressure coupled analysis, the effects of ground excavation and groundwater interaction were examined using wall horizontal deformation, ground surface movement, plastic strain pattern, effective stress distribution and axial stress of strut. In addition, based on the results from a parametric study on a wide range of soil profile and initial ground water table level, the ranges of wall displacement and ground deformation were suggested quantitatively.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Formation of Clay Minerals by Water-Rock Interaction in the Fracture of Gneiss (편마암 열극에서의 물-암석 상호반응에 의한 점토광물 생성)

  • Jeong, Chan-Ho;Kim, Soo-Jin;Koh, Yong-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 1994
  • As the groundwater flows along the fractures of crystalline rocks, it will be in contact with the fracture walls mostly coated by secondary minerals which are quite different form those of host rocks. The presence of fracture-filling minerals in crystalline rocks is important on the view point of radioactive waste disposal because of their great surface reactivity. The Surichi drill hole of 200 m in depth in the Yugu area composed mainly of Precambrian gneiss was selected to study the formation process of clay minerals on the fracture wall of gneiss, and their relation with present groundwater. The water-rock interaction in fractures resulted in the formation of gibbsite and clay minerals. They are formed by two different processes : (1) Incongruent dissolution of feldspar by groundwater diffused from a fracture path into rock matrix produced smectite and illite in situ, (2) on the wall of fracture, gibbsite, kaolinite, smectite and illite are formed by precipitation of dissolved species in groundwater. They show the paragenetic sequence such as gibbsite${\leftrightarrow}$kaolinite${\leftrightarrow}$smectite or illite. The paragenetic sequence of fracture-filling minerals was controlled by increase of pH of groundwater, decrease of fracture permeability by precipitation of fillings, and immobility of alkali or alkaline earths in groundwater. The groundwater from the Surichi borehole is a $Na-HCO_{3}$ type with pH range of 8.6-9.2. The sodium and bicarbonate in groundwater would be supplied by the dissolution of albite and calcite, respectively. The saturation index of groundwater and surface water calculated by WATEQ4F indicates that gibbsite and kaolinite are under precipitation to equilibrium state, and that smectite and illite are under equilibrium to redissolution environment. The stability relation of clay minerals in the $Na_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$ system shows that kaolinite is stable for all waters.

  • PDF

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

A geochemical study on the saline waters circulating in an ash disposal pond of Seocheon Power Plant. Korea

  • Kim, Kang-Joo;Park, Seong-Min;Kim, Jin-San;Natarajan Rajmohan;Hwang, Gab-Soo;Yun, Seong-Taek;Kim, Hyun-Jung;Kim, Suk-Hwi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.338-341
    • /
    • 2004
  • This study was carried out to understand the geochemistry of saline water circulating in an ash disposal pond of Seocheon power plant, Korea. For this study, ash pond waters, slurry water and seawater samples were collected and analyzed for major ions and trace elements. Results show that ash pond waters and slurry water are alkaline in nature due to high calcium content, and have high concentration of Ca, B, Li, As, Ba, Al, Si and Mn over seawater, suggest that these elements leached from fly ash even at high alkaline condition and ionic strength. Slurry water has high concentration of B, Ba, Li, Mn, Si and Sr compare to ash pond waters, expresses that these elements seem to be easily reached at initial stage fly ash-water interaction, and also might be associated with the surface of the fly ash particles. Additionally, PHREEQC program predicted several secondary solid phases, which are also influenced in the leaching of elements in to the saline water.

  • PDF