• Title/Summary/Keyword: Grounding point

Search Result 97, Processing Time 0.034 seconds

Study on Enhancing Lightning Protection Scheme of Catenary in Subway Viaduct Section

  • Li, Rui-Fang;Chen, Kui;Chen, Li-Sheng;Cao, Xiao-Bin;Wu, Guang-Ning;Zhang, Xue-Qin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.950-958
    • /
    • 2017
  • Viaduct increases the height of subway catenary, namely magnifies lightning attraction scope that lead to higher possibility of suffering lightning stroke. Therefore, it is necessary to analyze performance of lightning striking to catenary of subway in viaduct section and propose an improving lightning protection scheme. In this paper, using ATP-EMTP simulation software to establish an associated model to evaluate lightning withstand level of catenary with existing lightning protection schemes including arrester and grounding point, an improving lightning protection scheme is proposed - every pillar ground earth and arresters are installed with some installing spacing between 200m to 400m based on lightning damage degree and reliability requirements - according to analyzing results: while lightning withstand level is lowest for lightning striking to the neutral pillar, lightning withstand level is greatest for lightning striking to the both-ends pillar that arrester and grounding point are both installed; grounding point could obviously improve lightning withstand level for lightning striking to ground wire while arrester could obviously improve the lightning withstand level for lightning striking to catenary; every pillar ground earth could enhance the lowest lightning withstanding level up to 2.5 times than of that pillar ground earth across every 200m.

A Study on the Grounding Resistance Effects of Power Transformer in Electric Distribution Systems (배전계통에서 전력용 변압기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin;Lee, Kang-Soo;Choi, Sun-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • A safe grounding design is used for providing means to carry electric currents into the earth under fault conditions without exceeding any operating limits and for assuring that a person in the vicinity of grounded facilities is not exposed to danger of critical electrical shock. Transformer neutral point grounding is for the purpose of controlling the voltage to earth within tolerable limits under a line-to-ground fault. Transformer frame grounding is for the purpose of minimizing the hazardous potential within safety criteria appearing at the faulted equipment. ills paper deeply investigates the grounding resistance effects of distribution power transformers by analysing the neutral to eatth voltages and touch voltages when the fault occurs.

Analysis of electric characteristics for extension power supply between different grounding railway distribution system (접지방식이 상이한 철도배전계통의 연장급전을 위한 전기적 특성분석)

  • Jung, Ho-Sung;Han, Moon-Seob;Lee, Chang-Mu;Kwon, Sam-Young;Park, Hyeun-Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.736-741
    • /
    • 2005
  • This paper presents electric characteristics analysis and safe configuration for extension power supply between existent 6.6kV ungrounded distribution system and establishment and improvement 22.9kV direct grounding distribution system. For this, we model 6.6kV ungrounded and 22.9kV direct grounding distribution system of urban underground, ground region. and rural electrical, unelectrical region using PSCAD/EMTDC and analyze voltage drop, charging current, ground and short fault through simulation. To analyze electric characteristics of extension power supply, we simulate extension power supply of overhead line of 6.6kV ungrounded system and underground line of 22.9kV direct grounding system of rural electrical region and propose operation condition for safe extension power supply through result of analysis. Characteristics of voltage drop, charging current, ground and short fault appear almost similarly with electrical characteristic of direct power supply. However, because unbalance of phases may cause relay's malfunction of ungrounded system and ground fault current of direct grounding system may demage facilities of ungrounded system, we propose safe system configuration such as impedance grounding system of neutral point.

  • PDF

An Analysis of Grounding Methods for Safety of Linemen in Distribution Line (배전선로 작업안전을 위한 최적접지 방법 평가)

  • Lee, H.S.;Choi, S.W.;Ryu, B.H.;Chang, S.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.477-479
    • /
    • 2000
  • This paper presents an analysis which compares the effectiveness of different temporary safety grounding methods on working overhead distribution system. The analysis studied direct energization at fault conditions with seven scenarios. The results show that the scenario, single point safety grounding on the working pole with brackets Pairs spaced 2 km apart on both side of a work site is safest grounding method. This can be used to evaluate lineman safety on a overhead distribution systems in Korea.

  • PDF

Improvement of Transient Grounding Performance with Auxiliary Grounding Grid (보조접지망에 의한 과도접지성능의 개선)

  • Choi, Jong-Kee;Jung, Gil-Jo;Kim, Seon-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.932-934
    • /
    • 1998
  • In an electric substation, there are many sources of surge such as switching operations or lightning strokes. A grounding system submitted to such surge current presents very different behaviour from the observed under low frequency current. Especially, it has been reported that significant overvoltage occurs at the current feed-in point, and this may cause damages to other grounded components in the substation area. This paper describes the basic mechanism of improvement of grouding performance in transient state with auxiliary grounding grids.

  • PDF

The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System (22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석)

  • Jung, Kum-Young;Choi, Sun-Kyu;Shim, Keon-Bo;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

Study on the Between the Grounding Resistance and Grounding Electrode using Mesh Grounding Electrodes and a Shielding Panel (메쉬접지전극과 차폐패넬을 이용한 접지저항 및 접지전극간의 영향에 관한 연구)

  • Leeg, Chung-sik;Cho, Moon-taek;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • In this paper, the electric potential of electrode surface is investigated by assuming them as two dimensional sets of point current sources. And, the simulated water tank is manufactured as a reduced scale of the earth. Henceforth, the adequate model electrode for test is decided to decrease experimental errors relevant to the limitation of the size of the water tank. The one of important things of this work, the deduction method of the potential interference factor is proposed, which used as the criterion of the potential interference according to the shape of conductors and the laying conditions, when multiple grounding conductors are situated at the same resistance grounding area. Also, the validity of this theory is verified from a numerical simulation of the grounding electrode to be used in experiments, and this study is realized by the verified theory and the simulated experiments.

A Study on the Surge Analysis for Grounding System of the Communication Base Station (통신기지국 접지계의 써어지해석)

  • Kim, Jae-Yee;Yoon, Tae-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2025-2027
    • /
    • 2004
  • The grounding system design of the communication base station can be on the unfavorable conditions to induce the safe designing because of the limited area of the communication base station and the week point of surge caused by the given geographical condition such as the top point of mountain. In this paper, it is examined throughly about the way of safe designing that can reduce GPR(Ground Potential Rise) within the normal frequency band. And it is also considered the effective counter plan to cope with a transient phenomena that happen when surge of scores MHz-band inserted.

  • PDF

Improvement of Detailed Fault Point Decision Using EMTP Analysis of Search Coil Method for HVDC Cables (Search Coil법의 EMTP 분석을 통한 HVDC 케이블 상세 고장지점 판정 정확도 개선)

  • Jung, Chae-Kyun;Park, Jin-Woo;Yang, Byeong-Mo;Kang, Ji-Won;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1656-1662
    • /
    • 2011
  • In a previous paper, the EMTP modeling technique using search coil test is established through various transient analysis including system grounding condition and grounding resistance for HVDC submarine cables. It was also proved by comparison with real test results. Based on this EMTP modeling technique, in this paper, it will be applied for modeling of ${\pm}180kV$ real HVDC submarine system(Jeju~Haenam). This paper variously analyses the effects of fault resistance including the resistance between core and sheath, the resistance between sheath and amore and the resistance between amore and sea water through EMTP modeling of search coil method. The results can contribute to the accuracy of detailed fault point prediction of search coil test for HVDC submarine cables.