• 제목/요약/키워드: Grounding Electrode

검색결과 154건 처리시간 0.034초

가변주파수 인버터를 이용한 접지임피던스 측정 (Measurement of Impedance of the Grounding Grid using Variable Frequency Inverter)

  • 이복희;엄주홍;김교운
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.303-306
    • /
    • 2002
  • This paper presents a novel method for measuring the ground impedance in grounding systems. A square wave current was injected to the main grounding grid through auxiliary electrode, and the test current and ground potential rise(GPR) were measured using the band-pass filter. Ground impedance was calculated from the sinusoidal waveforms of the test current and GPR in frequency range of 20~2100Hz. Also the resistance and reactance component of ground impedance were analyzed.

  • PDF

배전계통에 사용되는 동봉 접지전극의 접지 임피던스 특성 분석 (Ground Impedance Characteristics Analysis of a Copper Rod-type Grounding Electrode used for Electric Distribution Systems)

  • 김경철;이주홍;진성은;오정석;박상영;최종기;김유준
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.46-51
    • /
    • 2005
  • 접지 시스템은 전기설비의 기준 전위점을 확보할 뿐만 아니라 대지에 낮은 저항으로 고장 전류를 흐르게 한다. 주파수에 대한 함수로 접지임피던스는 고장전류가 넓은 범위의 주파수를 포함하기 때문에 접지 성능을 평가하는데 필요하다. 동봉은 배전계통에서 가장 많이 쓰이는 접지 전극이다. 본 논문에서는 동봉의 접지임피던스를 주파수 60[Hz]에서 100[kHz] 범위까지 측정하였고, 접지임피던스를 회로 모델과 전달함수 모델로 구하여 측정된 값과 비교 검토하였다.

도전성 팽창 접지저감재의 접지저항 저감 효과 (The Ground Resistance Reduction Effect of o Conductive Expansion Ground Resistance Reducing Material)

  • 김종욱;김경철;최종기;강민규;백남웅
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.155-161
    • /
    • 2008
  • 접지시스템은 고장전류나 상시 전류를 낮은 저항의 대지로 흘러 보낸다. 접지전극 주변에 접지저감재를 매설하면 접촉 면적을 증가시켜 낮은 접지저항을 얻을 수 있다. 접지전극의 접촉면적을 확대시키면 접지저항값이 낮아진다는 특성을 이용하여 접지 시공시 팽창 특성을 가진 도전성 팽창 접지저감재를 개발하였다. 본 논문에서는 실험을 통하여 도전성 팽창 접지저감재가 일반 접지저감재보다 접지저항 저감 효과가 뛰어남을 검증하였다.

임펄스전압에 의한 토양의 이온화에 따른 접지성능의 향상 (Improvements of Grounding Performances Associated with Soil Ionization under Impulse Voltages)

  • 김회구;이복희
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.1971-1978
    • /
    • 2016
  • In this paper, electrical and physical characteristics associated with the ionization growth of soil under impulse voltages in a coaxial cylindrical electrode system to simulate a horizontally-buried ground electrode were experimentally investigated. The results were summarized as follows: Transient ground resistances decreased significantly by soil ionization. The voltage-current (V-I) curves for non-ionization in soil lined up in a straight line with the nearly same slope that is the ground resistance, but they showed a 'cross-closed loop' of ${\infty}$-shape under ionization. The conventional ground resistance and equivalent soil resistivity were inversely proportional to the peak value of injected impulse currents. On the other hand, the equivalent ionization radius and time-lag to the maximum value of ionization radius were increased with increasing the incident impulse voltages. An analysis method for the transient ground resistances of the ground electrode based on the ionization phenomena was proposed. The proposed method can be applied to analyze the transient performances of grounding systems for lightning protection in power system installations.

접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석 (An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents)

  • 최종혁;조용승;이복희
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

임펄스전압에 의한 동심원통형 전극계에서 토양 이온화특성 분석 (Analysis of Soil lonization Characteristics in Concentric Cylindrical Electrode System under Impulse Voltages)

  • 김회구;박건훈;이복희
    • 조명전기설비학회논문지
    • /
    • 제22권9호
    • /
    • pp.32-39
    • /
    • 2008
  • 본 논문은 뇌임펄스전압에 의한 토양의 이온화 현상과 모델접지시스템의 과도적 특성에 관련된 파라미터에 관한 것으로 건조 모래와 습한 모래에 대한 이온화 특성을 치수가 다른 동심원통형 전극계의 실험 용기를 이용하여 연구하였다. 결과로써, 높은 임펄스전압이 인가된 모래의 비선형 전기적 특성은 이온화 과정에 의해 발생하였다. 모래의 과도임피던스는 수분의 함유량과 인가임펄스전압의 크기에 의존하며, 수분의 함유량과 인가전압의 크기의 증가에 따라 접지임피던스는 감소하였다. 본 연구결과는 뇌서지에 대하여 우수한 성능을 가지는 접지시스템의 설계에 유용한 정보가 될 것이다

수변전설비에서 접지시스템의 공결점의 위치에 따른 임펄스 응답특성 (Impulse Response Characteristics of the Grounding Systems with respect to the Common-Connection Position in Power Utility System)

  • 이복희;엄주홍;김성원;심판섭;이승칠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2149-2151
    • /
    • 1999
  • This paper describes the impulse response characteristics of the grounding systems in power utility system. Several regulations regarding to electric power equipments, services and managements require that the groundings of class 1 ($E_1$) and class 2 ($E_2$) must be connected at the common point in grounding systems. In addition, the grounding for arrester ($E_{LA}$), which belongs to the grounding of class 1, should be connected at the same point. However, there is no method and position of common-connection at anywhere. In this work, when the impulse current was injected through the grounding conductor for arrester, the investigations measuring and analyzing potential rises induced at the common connection point and other grounding conductors were conducted. The experiments were carried out in the conditions of the grounding conductor of 25m long and the near or remote common connection from ground electrode. The lightning impulse current was applied so as to simulate the on-set of arrester due to lightning and/or switching surges.

  • PDF

인체전류를 기반으로 하는 감전의 위험성 평가방법 (A Method for Evaluating Electric Shock Hazards Based on Human Body Current)

  • 이복희;유양우;최종혁
    • 조명전기설비학회논문지
    • /
    • 제25권6호
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

위험전압 검토에 의한 메시접지설계 (Mesh Grounding Grid Design of Dangerous Voltage Review)

  • 손석금;김재철
    • 전기학회논문지P
    • /
    • 제60권3호
    • /
    • pp.120-125
    • /
    • 2011
  • When we design the grounding grid, dangerous voltage ANSI/IEEE Std. 80 method has been commonly used in the domestic area. However, the suitability of the ground rules for the design environment available. However, the suitability of the ground rules for the design environment available. In this paper, sticks according to the electrode conductor in combination with the mesh in order to design the ground by the IEEE Std.80 was designed. So in this paper, we examined of IEEE Std. 80 touch voltage method marginal utility and we induced for those problems by comparison between IEEE Std. 80 touch voltage value and simulation experimentation value. Furthermore, this paper presents a new design grounding system method that complements the IEEE Std. 80 method.

접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석 (An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents)

  • 이복희;조용승;최종혁;양순만
    • 조명전기설비학회논문지
    • /
    • 제25권12호
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.