• Title/Summary/Keyword: Grounding Design

Search Result 169, Processing Time 0.023 seconds

A Study on the Secular Change Characteristics of Grounding Systems (접지계의 경년변화 특성에 관한 연구)

  • Kim Jae-Yee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.224-226
    • /
    • 2005
  • In this paper, the secular changes of buried grounding electrodes was investigated; the electrodes are such facilities as grounding grid, grounding connector, grounding terminal and grounding rod etc.. The corrosiveness of removed substation grounding electrodes after commercial operation more than 50 years was measured and its conductivity deterioration trend was analyzed. The measuring results using three experimental methods were compared, finally the consideration for safe and economic grounding design were shown. As the result, it shows the maintenance necessity of grounding systems.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

Earth Resistivity Modelling and Grounding Resistance Estimation for Yongdam Dam Power Station Grounding Design (용담댐 발전소 접지설계를 위한 대지비저항 모델링 및 접지저항 추정)

  • Oh, Min-Hwan;Kim, Hyoung-Soo;Kim, Jong-Deug
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1188-1191
    • /
    • 1998
  • Detailed estimation of subsurface resistivity distribution and accurate estimation of actual fault current coming into the grounding system are indispensible to optimun grounding system design. Especially, it is essential for efficient grounding design to estimate subsurface resistivity distribution quantitatively and logically. Accurate estimation of subsurface resistivity distribution has an absolute influence on calculating touch voltage, step voltage and ground potential rise (GPR) which are related with grounding design standard for human safety. In this study, thirty-three electrical sounding surveys were made in Yongdam Power Station to obtain detailed subsurface resistivity distribution and the sounding data were interpreted quantitatively using multi-layered model. The results of the quantitative resistivity models were adopted practically to calculate grounding resistance values. Analytical asymptotic equations and CDEGS program were used in grounding resistance calculation and the results were compared and reviewed in the study.

  • PDF

Measurement and Analysis of the Dangerous Voltage Around Grounding Electrode for Safety in Substation Ground (변전소 접지설계를 위한 접지전극 주변의 위험전압 측정과 분석)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.214-219
    • /
    • 2011
  • The substation grounding design,"IEEE Guide for Safety in AC Substation Grounding (ANSI / IEEE Std 80)"has been widely used. Substation grounding design and substation grounding resistance of grounding network site to predict the voltage at the risk of a very important task, which is a ground fault current due to the influx of the ground network and due to rise in the Earth's potential can be applied to human dangerous Voltage within safe tolerances be configured to be the ground because the network. IEEE Std. 80 for the substation construction safety equipment on the ground securing the ground electrode and the mesh around the boundary potential distribution in terms of risk analysis by the touch voltage and the reference was to clean up the definition and the basic steps of the voltage of the voltage limits the risk of peripheral grounding electrode Suppression by the simulator through a new secure from dangerous voltage design techniques were presented.

An Analysis of Transient Characteristics on Grounding Systems in the Radio Relay Station (무선중계소 접지계의 과도특성 해석)

  • Wang Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.1-5
    • /
    • 1993
  • The surge impedance of grounding systems must be accurately computed for a safe grounding design. Specifically, the case of radio relay station in a mountaintop region is required special design method using transient analyses. To approach these design objectives, this paper presents an algorithm to compute the surge impedance of two or more grounding systems using the Laplace Transform technique and deals with the analysis of the transient characteristics on grounding systems. Also, simulation results are compared with the measured data to prove the validity of the algorithm.

  • PDF

A Study on the Optimal Grounding Design using Pattern Search Method for Electric Power Facilities (전력사용 시설물의 Pattern Search 법을 이용한 최적 접지 설계에 관한 연구)

  • 최홍규;김경철;최병숙
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.173-180
    • /
    • 2001
  • Electric power facilities must have effective grounding to provide means to carry electric current into the earth under fault conditions and to prevent damage of equipment, Ignition, and electrocution of presonnel. nuts paper present an algorithm called the Pattern Search method for the optimal parameters selection of the grounding system. Computer simulation results used the CDEGS grounding analysis program verifying the effects of the grounding system design parameters obtained from this method show that the grounding systems are adequately designed.

  • PDF

The Effects of Soil Model in the Grounding System Design (접지시스템 설계에서 대지구조 모델의 영향 분석)

  • 한기항;심건보;오기봉
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.313-318
    • /
    • 2002
  • Purpose of the grounding system design are establish a safe environment for personnel as well as the general public in the vicinity of the power system equipment, and establish a low resistance connection to earth such that protective devices detect and isolate faults quickly and potential rise of the grounding system does not exceed a value which could damage electrical equipment. This paper deals with the grounding system design for the electric facilities. In this paper, emphasize the necessity of the computer programs for the grounding system designs. Especially, earth soil models for the grounding system design are must used two-layered soil model.

  • PDF

Design of Substation Grounding Grid for Reduction of Touch Voltage (접촉전압 저감을 위한 변전소 접지망 설계)

  • Choi, J.K.;Kee, H.C.;Jung, G.J.;Kim, B.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2352-2354
    • /
    • 1999
  • The purpose of substation grounding system is to provide reference potential with power system and protect field workers from electrical shock resulted from unsymetrical power system faults. For this purpose, grounding grid should be designed to maintain max, touch voltage under safety criteria in fault conditions. It is difficult, however, to design a safe grounding grid at very resistive or narrow area. This paper describes an example of substation grounding grid design procedures in such areas with very severe design conditions. By using grounding conductors, which is located close to earth surface, earth surface potential could be controlled effectively, so that maximum touch voltages is to be maintained under safety criteria.

  • PDF

Mesh Grounding Grid Design of Dangerous Voltage Review (위험전압 검토에 의한 메시접지설계)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.120-125
    • /
    • 2011
  • When we design the grounding grid, dangerous voltage ANSI/IEEE Std. 80 method has been commonly used in the domestic area. However, the suitability of the ground rules for the design environment available. However, the suitability of the ground rules for the design environment available. In this paper, sticks according to the electrode conductor in combination with the mesh in order to design the ground by the IEEE Std.80 was designed. So in this paper, we examined of IEEE Std. 80 touch voltage method marginal utility and we induced for those problems by comparison between IEEE Std. 80 touch voltage value and simulation experimentation value. Furthermore, this paper presents a new design grounding system method that complements the IEEE Std. 80 method.

Design and Implementation of Wideband Grounding Impedance Measurement Device using IQ Demodulation Method (IQ 복조 기법을 이용한 광대역 접지 임피던스 측정기의 설계 및 구현)

  • Kim, Young-Jin;Gil, Hyung-Jun;Kim, Sung-Ju;Kim, Jae Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.19-24
    • /
    • 2016
  • One of key parameters on lightning protection system design of electric, information and communication system is grounding impedance. Earth impedance includes numerous information about earthing performance of grounding system. This paper suggests grounding impedance measuring device which is comprised of wideband current source, voltage and current measuring components. We used IQ Demodulation to measure more accurate phase difference of voltage and current. The range of frequency is up to 1 MHz that is IEEE defined as the range of lightning surge. We compared developed grounding impedance measuring device with existing one to test its performance, and we used grounding system while we implemented measurement and analysing by using fall of potential method IEEE Std.81 proposed.