• Title/Summary/Keyword: Ground-water Flow System

Search Result 155, Processing Time 0.027 seconds

A Study on the Variation of Ground Water Temperature for Development of Ground Water Source Heat Pump (지하수 열원 열펌프 개발을 위한 지하수 온도의 변화 특성 연구)

  • Nam Hyun Kyu;Kim Youngil;Seo Joung Ah;Shin Younggy
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ground water source heat pumps are clean, energy-efficient and environment-friendly systems for cooling and heating. Although the initial cost of ground water source heat pump system is higher than that of air source, it is now widely accepted as an economical system since the installation cost can be returned within a short period of time due to its high efficiency. In a ground water source heat pump system, the variation of the ground water temperature is an important factor that influences the system performance. In this study, variation of the ground water temperature of a single well system is studied experimentally for various operating conditions. When ground water flow exists in the underground, the returned water exchanges heat efficiently with the ground and the temperature of the ground water remains nearly constant. Hence the short circuit problem is minimized. If an active flow of ground water flow exists in the underground, a singe well heat pumps system will be free of short circuit problem and can operate with high performance.

  • PDF

The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model (유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성)

  • Kim, Sangdan;Kang, Du Kee;Kim, Moon Su;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this study daily flow data is constructed from 8-day intervals flow data which has been measured by Nakdong River Water Environmental Laboratory. TANK model is used to expand 8-day intervals flow data into daily flow data. Using the Sequential quadratic programing, TANK model is auto-calibrated with daily precipitation and 8-day interval flow data. Generated and measured daily surface flow, ground water flow data and ground water recharge are shown to be in a good agreement. From this result, it is thought that this method has the potential to provide daily flow data for calibrating an watershed model such as SWAT.

Cooling Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 냉방성능)

  • Park, Geun-Woo;Nam, Hyun-Ku;Kang, Byung-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Cooling Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 냉방성능)

  • Park, Geun-Woo;Nam, Hyun-Ku;Kang, Byung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Heating Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 난방성능)

  • Park, Geun-Woo;Lee, Eung-Youl
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate (용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chan-Yong;Choi, Jong-Min
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

A Study on Improving the Efficiency of Ground Heat Exchanger (지중열교환기 성능 향상에 관한 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Kim, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3142-3147
    • /
    • 2008
  • A simple transient simulation of ground source heat pump system was carried out to investigate the effects of ground thermal conductivity on its performance. The TRNSYS code with a simple water to water heat pump model was used to compare the COP variation of the system. A new ground heat exchanger called by semi-closed loop was proposed and constructed in the real site. The effective thermal conductivity was measured using the test equipment developed by according to the line source model. The simulation results showed that highly efficient thermal conductivity of the grout material could increase the performance of the heat pump system very well. And the new ground heat exchanger showed the increased effective thermal conductivity as the penetration water flow rate(PWFR) was increased. Therefore, the performance improvement of the heat pump system using the proposed ground heat exchanger can be expected.

  • PDF

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Performance Evaluation of Open-Loop Ground Water Heat Pump system (개방형 지열히트펌프 시스템의 성능평가)

  • Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.9-14
    • /
    • 2006
  • Open loop or ground water heat pump systems are the oldest of ground-source systems. Standing column wells can be used as highly efficient ground heat exchanger in geo-thermal heat pump systems, where hydrological and geological conditions are suitable. These systems require some careful considerations for well design, ground water flow, heat exchanger selection etc This paper describes 9round water temperature variations, performances in heat ins and cool ing mode and the results of ground water analysis.

  • PDF