• Title/Summary/Keyword: Ground-detection sensor

Search Result 109, Processing Time 0.024 seconds

Vehicle Tracing Method Using Adaptive High Order Correlation Analysis (적응적 고차 상관 처리를 이용한 차량의 주행 궤적 검출법)

  • 장경영;오재응;좌등탁송
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • Vehicle movement detection by high order correlation analysis of optical sensor array signals is introduced. The optical sensors observe the road which is assumed to be a non-uniform speckle-like texture. The measurement system is applicable to general robotic movement detection because : 1) It employs a non-contact measurement method, 2) The system can be made very compact, and 3) It enables approximation of the movement trace with a sequence of arcs instead of the conventional connection of simple line segments. In this work, we have looked into estimation of running trace of an autonomous vehicle by observing the ground pattern.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Gyro Signal Processing-based Stance Phase Detection Method in Foot Mounted PDR

  • Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • A number of techniques have been studied to estimate the position of pedestrians in indoor space. Among them, the technique of estimating the position using only the sensors attached to the body of the pedestrian without using the infrastructure is regarded as a very important technology for special purpose pedestrians such as the firefighters. In particular, it forms a research field under the name of Pedestrian Dead Reckoning (PDR). In this paper, we focus on a method for step detection which is essential when performing PDR using Inertial Measurement Unit (IMU) mounted on a shoe. Many researches have been done to detect the stance phase where the foot contacts the ground. Most of these methods, however, have a way to detect the specific size of the sensor signal and require thresholds for these methods. This has the difficulty of changing these thresholds if the user is different. To solve this problem, we propose a stance phase detection method that does not require any threshold value. It is expected that this result will make it easier to commercialize the technology because PDR can be implemented without user-dependent parameter setting.

Method of Walking Surface Identification Technique for Automatic Change of Walking Mode of Intelligent Bionic Leg (지능형 의족의 보행모드 자동변경을 위한 보행노면 판별 기법)

  • Yoo, Seong-Bong;Lim, Young-Kwang;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.81-89
    • /
    • 2017
  • In this paper, we propose a gait pattern recognition method for intelligent prosthesis that enables walking in various environments of femoral amputees. The proposed gait mode changing method is a single sensor based algorithm which can discriminate gait surface and gait phase using only strain gauges sensor, and it is designed to simplify the algorithm based on multiple sensors of existing intelligent prosthesis and to reduce cost of prosthesis system. For the recognition algorithm, we analyzed characteristics of the ground reaction force generated during gait of normal person and defined gait step segmentation and gait detection condition, A gait analyzer was constructed for the gait experiment in the environment similar to the femoral amputee. The validity of the paper was verified through the defined detection conditions and fabricated instruments. The accuracy of the algorithm based on the single sensor was 95%. Based on the proposed single sensor-based algorithm, it is considered that the intelligent prosthesis system can be made inexpensive, and the user can directly grasp the state of the walking surface and shift the walking mode. It is confirmed that it is possible to change the automatic walking mode to switch the walking mode that is suitable for the walking mode.

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator (슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.29-35
    • /
    • 2018
  • In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

Monitoring Technique and Device of Surface Contamination for Line-Post Insulator (지지애자의 표면오염 모니터링 기술 및 장치)

  • Kil, Gyung-Suk;Park, Dae-Won;Jung, Kwang-Seok;Kim, Sun-Jae;Seo, Dong-Hoan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-417
    • /
    • 2010
  • Line to ground faults by deterioration of insulators has frequently occurred in power system, and the main cause is surface contamination of the insulators. The contamination of insulator is analyzed by monitoring the surface leakage current flowing them. The suspension insulator is monitored by installation of a zero-phase current sensor(ZCT), but the line-post insulator is impossible to apply the same method because of its large diameter structure. This paper proposed a detection method of surface leakage current for a line-post insulator, and it can easily be applied to new and/or built insulators. The leakage current is indirectly calculated from the potential difference between the metal electrode attached on the surface of insulator and the ground connector. To evaluate the performance of the proposed method, the leakage current is compared as a function of contamination condition controlled by the density of NaCl solution. The leakage current is proportioned to the density of NaCl solution, and the voltage detected by the electrode showed the same trend. From the experimental results, we designed and fabricated a monitoring device which is composed of a detection electrode, signal converter, microprocessor, and ZigBee, and its measurement range is $10{\mu}A{\sim}5mA$.

A New True Ortho-photo Generation Algorithm for High Resolution Satellite Imagery

  • Bang, Ki-In;Kim, Chang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.347-359
    • /
    • 2010
  • Ortho-photos provide valuable spatial and spectral information for various Geographic Information System (GIS) and mapping applications. The absence of relief displacement and the uniform scale in ortho-photos enable interested users to measure distances, compute areas, derive geographic locations, and quantify changes. Differential rectification has traditionally been used for ortho-photo generation. However, differential rectification produces serious problems (in the form of ghost images) when dealing with large scale imagery over urban areas. To avoid these artifacts, true ortho-photo generation techniques have been devised to remove ghost images through visibility analysis and occlusion detection. So far, the Z-buffer method has been one of the most popular methods for true ortho-photo generation. However, it is quite sensitive to the relationship between the cell size of the Digital Surface Model (DSM) and the Ground Sampling Distance (GSD) of the imaging sensor. Another critical issue of true ortho-photo generation using high resolution satellite imagery is the scan line search. In other words, the perspective center corresponding to each ground point should be identified since we are dealing with a line camera. This paper introduces alternative methodology for true ortho-photo generation that circumvents the drawbacks of the Z-buffer technique and the existing scan line search methods. The experiments using real data are carried out while comparing the performance of the proposed and the existing methods through qualitative and quantitative evaluations and computational efficiency. The experimental analysis proved that the proposed method provided the best success ratio of the occlusion detection and had reasonable processing time compared to all other true ortho-photo generation methods tested in this paper.

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

Compact Doppler Sensor Using Oscillator Type Active Antenna (능동 발진 안테나를 이용한 소형 도플러 센서)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance or speed of a moving object. The active antenna has been realized by oscillator using radiator, patch antenna, as its resonator. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The oscillator type active antenna has been designed and simulated. The prototype fabricated has a very small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $130^{\circ}$ and oscillation frequency of 2.373GHz has been measured. Test results as a doppler sensor shows that doppler signal voltage of about 190mV has been obtained for conducting plate moving 1 meter away from the sensor. And, doppler signal voltage has been linearly increased to the ground from 4.5m height by free-falling the sensor.