• Title/Summary/Keyword: Ground wind observation

Search Result 45, Processing Time 0.333 seconds

Geotechnical Considerations for Railway Design in the Middle East (중동지역 철도설계 시 지반공학적 고려사항)

  • Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.49-60
    • /
    • 2013
  • The plan for major design-build projects of railway link among countries in gulf area (GCC) and freight rail construction is recently announced, but Korean companies have a hard time tendering due to special geotechnical condition in the Middle East. The major geotechnical risks during railway construction in the Middle East are related to ground improvement of soft Sabkha ground, wind-blown sand mitigation measure, dune sand compaction, and construction of large-scale cut and embankment. In this study, the characteristics of special geotechnical condition and potential geotechnical risks during railway construction in the Middle East are discussed on the basis of field observation, literature review, and field and laboratory test results.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

THERMOSPHERIC NEUTRAL WINDS WITHIN THE POLAR CAP IN RELATION TO SOLAR ACTIVITY

  • Won, Young-In;Killeen, T.L.;Niciejewski, R.J.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • Thermospheric neutral winds and temperatures have been collected from the ground-based Fabry-Perot interferometer (FPI) at Thule Air Base ($76.5^{\circ}N{\;}69.0^{\circ}W$), Greenland since 1985. The thermospheric observations are obtained by determining the Doppler characteristics f the [OI] 6300 ${\AA}$ emissions of atomic oxygen. The FPI operates routinely during the winter season, with a limitation in the observation by the existence of clouds. For this study, data acquired from 1985 to 1991 were analyzed. The neutral wind measurements from these long-term measurements are used to investigate the influence of solar cycle variation on the high-latitude thermospheric dynamics. These data provide experimental results of the geomagnetic polar cap are also compared with the predictions of two semiempirical models : the vector spherical harmonics (VSH) model of Killeen et al. (1987) and the horizontal wind model (HWM) of Hedin et al. (1991). The experimental results show a good positive correlation between solar activity and thermospheric wind speed over the geomagnetic polar cap. The calculated correlation coefficient indicates that an increase of 100 in F10.7 index corresponds to an increase in wind speed of about 100 m/s. The model predictions reveal similar trends of wind speed variation as a function of solar activity, with the VSH and HWM models tending to overestimate and underestimate the wind speed, respectively.

  • PDF

High altitude powered lighter-than-air vehicle as remote sensing platform

  • Onda, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1361-1364
    • /
    • 1990
  • In order to tackle global environmental problems such as destruction of the ozone layer or climatic changes due to atmospheric temperature increase, the acquisition of plentiful and precise data is necessary. Therefore, a means of conducting long-lasting high-resolution measurements over broad areas is required. A feasibility study has been made on a high altitude (20km), super-pressured helium-filled PLTA (Powered Ligher-than-Air) vehicle as an ideal platform for environmental observation. It has a long service life and carries a larger payload than an artificial satellite. This PLTA platform uses an electric propulsion system to maintain position in space against wind currents. The thruster is driven by solar power acquired from solar cells. For night use, solar energy is stored in regenerative fuel cells. This study focuses on energy balance and structural analysis of the hull and platform. The platform is capable of conducting high resolution remote sensing as well as having the capability to serve as a telecommunications relay. The platform could replace a number of ground-based telecommunications relay facilities, guaranteeing sufficient radio frequency intensity to secure good quality telecommunication transmittal. The altitude at which the platform resides has the lowest wind flow in the lower stratosphere, and permits viewing from the ground within a 1,000km range. Because this altitude is much lower than that required of an artificial satellite, the measuring resolution is a couple of thousand times higher than with artificial satellites. The platform can also be used to chase typhoons and observe them from their sources in tropical regions.

  • PDF

SEASONAL VARIATIONS OF WIND AND TEMPERATURE AT THE MESOPAUSE (중간권 계면에서의 온도와 바람의 계절 변화)

  • 최기혁;홍윤식;데이빗리즈;빈센트위크와
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • The Mesopause (85km) is the boundary between the Mesosphere and the Thermosphere and is very interesting region because there are active fluid dynamic motions and airglow phenomena due to various chemical reactions. But there have been not many studies due to the difficulties of insitu measurement. However in this study we have obtained the Doppler temperatures and winds through the observing Hydroxyl(OH) emission at 843nm using a ground-based Fabry-Perot interferometer. Due to the 2 years of long term observation, we can confirm the seasonal Mesopause temperature variation, which is the opposite trend against the temperature at the ground level, and reveal annual and biannual variations for meridional and zonal wind respectively. These seasonal variations might be the result of the inter-hemispheric circulation.

  • PDF

Radiosonde Observation Using General Purpose Radio Receiving Instruments (범용 라디오 수신장비를 활용한 라디오존데 관측)

  • Hyungyu Kang;Joowan Kim;Minseong Park;Sanghyun An
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.325-336
    • /
    • 2024
  • Radiosonde is an important in-situ profiling instrument that measures atmospheric temperature, moisture, and wind structure from the surface to the middle stratosphere. The operational radiosonde measurements are carried out more than twice (at 0000 UTC and 1200 UTC) daily at approximately 1,300 World Meteorological Organization (WMO) stations and play a pivotal role in daily weather forecasts. It also contributes to the monitoring of atmospheric structure by providing the key physical information like temperature and pressure, forming the backbone of atmospheric (re)analyses and numerical weather forecasts. Additionally, high-resolution radiosonde profiles are used for calibration and evaluation of satellite products. Despite these advantages, radiosonde measurements are mostly limited to operational uses due to the high initial cost of ground instrument setup required for data transmission and reception. This study outlines a cost-effective (roughly one-tenth of the operational cost) method for establishing the ground station and the necessary radiosonde measurement procedures, offering guidance for individual researchers or university-level instructors.

Short-term Variation in Class A Pan Evaporation (대형증발계 증발량의 일 변화)

  • 이부용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.197-202
    • /
    • 2002
  • A new method is used to estimate the amount of water evaporation from Class A Pan with higher precision and accuracy. The principle of method is to detect the weight change of a buoyant sinker resulting from a change in water level of Class A Pan. A strain-gauge load cell is used to measure the weight change. Field observation of evaporation was done at Pohang Meteorological Station from June 24 to August 4, 2002. By using this new method, it is possible to measure hourly evaporation accurately even under a strong solar radiation and wind disturbance, enabling a direct comparison of evaporation with other meteorological elements. At night, under low humidity and high wind speed conditions, more evaporation was recorded than during daytime. Maximum evaporation rates observed during this period exceed 1.0 mm/hour under the sunny and windy conditions with low humidity. To understand relationships between meteorological elements and latent heat flux at ground level, we suggest intensive held experiments using high accuracy evaporation recording instruments with hourly time interval.

A Study on the Development of Hourly Evaporation Recording Instrument for Class A Pan (대형증발계용 매시간 증발 기록계 개발에 관한 연구)

  • Bu-Yong Lee
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.323-327
    • /
    • 2001
  • A new method is developed to estimate the evaporation of water from a surface with high accuracy and resolution. The principle of new method is to detect a weight change of buoyant weight according to a change in water level of Class A Pan mesured by the use of a strain-gauge load cell. Field test of evaporation recording new instrument was carried out at Suwon for 10 days July 1999. It is possible in field observation to measure hourly evaporation amount by newly developed evaporation recording instrument in Class A Pan against strong solar radiation. Present study provide a possibility of domestic high accuracy instrument development below than 0.1mm water level measurement accuracy. If there is low humidity and high wind speed conditions which is possible to evaporate from water surface during night time. And it needs continuous study to understand between meteorological elements and latent heat effect at ground level by field observation study using high accuracy evaporation recording instrument.

  • PDF

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.