• Title/Summary/Keyword: Ground water flow

Search Result 462, Processing Time 0.027 seconds

A Study on Heating Characteristics of Ground Source Heat Pump with Variation of Heat Exchange Methods (열교환방식에 따른 지열히트펌프의 난방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • The objective of this study is to investigate the influence on the heating performance for a water-to-water 10RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The heating capacity and COP of the heat pump increased with increasing ground heat source temperature. As a result, compared to a refrigerant switching method, the water switching method with counter flow improves the heating capacity and COP by approximately 5% in average, respectively.

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Heat Pump with a Variation of Compressor Speed and Water Flow Rate (압축기 용량 및 유량변화에 따른 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chanyong;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz, and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWT of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system optimized at higher refrigerant charge amount conditions.

  • PDF

Behaviour of Leaking Tunnels under Unconfined Flow Condition (비구속 흐름조건하에 있는 배수형 터널의 거동)

  • Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.43-54
    • /
    • 2005
  • Tunnelling in a water bearing soil may cause draw-down of ground water table. Modelling of this problem requires considering the change of phreatic surface including the stress constitutive relationship for an unsaturated soil. However, it is normally assumed that ground water is confined. Numerical formulation of coupled behavior considering phreatic surface is described and implemented into computer program. Influence of unconfined flow on tunnel and ground is thoroughly investigated and compared with that of confined flow condition. It is identified that ground and lining behaviour below phreatic surface is almost the same as that under confined flow conditions, however, there is considerable difference in ground behaviour above phreatic surface. It is generally concluded that the assumption of confined flow is acceptable in terms of lining design.

Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities (지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가)

  • Choi, Woo-Seok;Kang, Byung-Chun;Kim, Eun-Sup;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.205-216
    • /
    • 2017
  • Fluctuations in groundwater level are the major cause of ground subsidence in the abandoned limestone mine. In this study, evaluation of groundwater flow under three different cases of natural condition, aggregate-filling, temporary drainage in groundwater-saturated limestone mine cavities was executed by 3-dimensional analysis. In the case of aggregate-filling, although the water level both in the upper ground of mine cavities and an agricultural watershed was elevated, it was lower than the water level fluctuation of an agricultural water use and rainfall and the flow rate was similar to the flow rate of natural condition. In the case of temporary drainage, as the water level in the upper ground of mine cavities and an agricultural watershed decrease rapidly and the flow rate has increased by 25times, so the risk of ground subsidence increased.

A Note on Under ground water (지하수에 대한 소고)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1055-1063
    • /
    • 1966
  • Ground water hydrology may be defined as the science of the occnrrence, distribution, and movement of water below the surface of the earth. Geohydrology has an identical connotation, and hydrogeology differs only by its greater emphasis on geology. Ground water referred to with out further specification is commonly understood to mean water occupying all the voids with in a geologic stratum. This saturated zone is tobe distinguished from an unsaturated, or aeration zone where voids are filled \yith water and air. Water contained in saturate:! zones is important for engineering works, geologic studies, and water supply developements Conseqently, the occurrence of water in these zones will be emphasized here. Un-saturated zones are usualiy found above saturated zones and extending upward to the ground surface. Because this water includes soil moisture with in the root zone, it is a major concern of agricultlre, botmy and soil science. No rigid demarcation of waters, between the two zones is possible, for they possess an iriterdependent boundary and water can move from zone to zone in either science, including eology, hydrology, meteorology, and oceanography are concerned with earths water, but ground water hydrology may be regarded as a specialized science combining elements of geology, hydrology, and fluid mechanics. Geology governs the occurrence and distribution of ground water, hydrology determines the supply of water to the ground, and fluid mechanics explains its movement. To provide maximum development of grofnd water resources. for benefical use requires thinking in terms of an entire ground water basin. In order to inorease the natural supply of ground water, man has attempted to artifially recharge ground water basins. Coastal aquifers come in contact with the ocean at seawater of the coastline. Fresh ground water is discharged in to the ocean. the seaward flow of ground water has been decreased or even reversed, Sea water penettating in land in aquifer.

  • PDF

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Difference in biomasses depending on apllication of speed over the ground and speed through the water during biomass estimation of Metapenaeus joyneri via swept area methods (소해면적법에 의한 중하(Metapenaeus joyneri) 자원량 추정 시 대지속력과 대수속력 사용에 따른 자원량 차이)

  • Young-Hwan JOO;Min-Son KIM;Hyun-Su JO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • The towing distance, which is speed over the ground, and the water flow quantity, which is speed through the water, were used when estimating the amount of Metapenaeus joyneri resources that rose to the surface at night using the swept area method in order to compare and analyze the difference. It was conducted using a shrimp dredge, trial fishing gear for catching Metapenaeus joyneri. Catch during the entire survey period was 188.9 kg. Monthly catch ranged from 3.1 to 109.2 kg, highest in June and lowest in September. The swept volume calculated using the speed over the ground was about 13% higher than using the speed through the water. Metapenaeus joyneri resources estimated using the towing distance ranged from 320.1 to 14,649.8 kg. Resources estimated using the water flow quantity ranged from 278.5 to 12,886.3 kg. Therefore, the amount of Metapenaeus joyneri resources estimated using the speed over the ground was about 14% higher than the method using the speed through the water, indicating that the amount of resources was overestimated.

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.