초경량 비행장치인 드론의 최대 허용 비행 고도는 지상 150m로 이는 난류의 영향을 받아 바람의 변동성이 강한 대기경계층 내에 존재한다. 또한 대기경계층 내에서의 바람 변동성은 지리적 위치에 따라 다른 특성을 가지므로 드론 관련 안전사고 방지를 위해서는 비행 지역에서의 각 고도의 바람 특성에 대한 명확한 이해가 필요하다. 본 연구에서는 인천국제공항 인근에 위치한 항공기상관측장비 테스트베드에서 윈드라이다(WindMast 350M)를 사용하여 2022년 7월과 9월에 바람의 연직 구조 관측을 수행하였고, 이러한 관측된 바람 자료를 활용하여 드론의 안전비행을 위한 정보를 생산하는 분석 방안을 제시하였다. 우선 윈드라이다를 통해 수집된 바람 자료에 푸리에 변환 분석 방법을 사용하여 수평 풍속의 시간 규모 특징을 각 고도별로 살펴보았다. 또한 강수와 무강수 사례의 바람장의 스펙트럼으로부터 드론 비행에 중요한 바람의 시간 규모인 1시간 이하 규모의 수평 풍속의 분산을 분리하여 전체 규모에 대한 1시간 이하 규모의 기여도를 각 고도별로 확인하였다.
기상 레이다는 해당 영역에서의 비, 구름이나 먼지 입자 등에 의해 반사되어 나타나는 기상신호로부터 신호의 도플러 주파수 및 도플러 스펙트럼 폭 값들을 추정한다. 이러한 값들은 평균풍속, 대기교란 정도 등의 정보와 직접적으로 연관된 중요한 변수들이다. 따라서 정확한 기상정보를 얻기 위해서는 이러한 추정 값들에 대한 매우 높은 신뢰성이 요구 된다. 그러나 기상 레이다에서는 기상현상에 의한 수신 신호뿐만 아니라 지표면 반사나 이동하는 물체 등에 의한 반사파들, 즉 클러터가 포함되어 나타나게 된다. 이러한 클러터들의 존재는 기상정보 추출을 위한 변수 값들을 추정하는데 심각한 오차를 유발하게 된다. 따라서 본 논문에서는 강력한 클러터들에 의한 추정 오차를 분석하기 위하여 기상 수신신호 및 클러터들에 대한 도플러 스펙트럼 모델들을 각각 도출하였다. 이러한 모델들을 이용하여 기상 신호 및 클러터 전력에 따른 다양한 수신신호들을 모의 구현하고 처리함으로서 클러터에 의한 영향을 분석하였다.
태양광 발전 시스템은 태양광 패널이 부착되어 있는 구조물, 이를 지지하는 부분과 발전된 전력을 계통 또는 부하측에 공급하는 장치로 구성된다. 태양광 패널의 발전효율은 태양빛의 입사량에 영향을 받기 때문에 패널이 태양빛을 가장 많이 받을 수 있는 방향으로 패널 구조물을 설치한다. 그러나 태양은 계속 이동하기 때문에 고정식 보다는 태양을 향하여 패널이 회전하는 방식이 더욱 효율이 좋다. 태양광 패널 구조물은 야외에 설치되므로 풍하중, 적설하중 지진하중 등이 작용한다. 본 논문에서는 태양광 패널 구조물에 가장 영향이 큰 풍하중을 유한요소법을 사용하여 구하고 이를 적용하여 태양 추적식 발전 장치의 구조물을 설계하였다. 특히 패널간의 간격에 따른 풍하중을 구하고, 패널 구조물이 지면과 이루는 각도에 따른 풍하중의 변화도 구하였다. 패널간의 간격은 간격이 없을 경우, 간격이 40 mm, 80 mm일 경우 등 3가지 경우에 대하여 해석을 하였으며, 지면과의 각도는 30도, 45도, 60도 등에 대하여 해석을 하였다. 해석결과 풍하중은 패널간의 간격이 없을 경우가 가장 적게 나타났고, 지면과의 경사각이 클수록 커지는 것을 알 수 있었다.
A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.
Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.
본 논문에서는 대기 속도 센서가 없는 항공기에서의 강인 필터 기반의 바람 추정 기법을 제안한다. 바람 속도(wind velocity)는 항공기의 유도 및 제어를 더욱 정밀하게 수행하기 위해 사용되는 정보이다. 일반적으로 바람 속도는, 대기 속도와 지면 속도의 차이를 계산하여 얻을 수 있다. 이때 대기 속도는 피토 튜브와 같은 항공기와 대기의 상대 속도를 측정하는 대기 속도 측정 센서에서 얻을 수 있고, 지면 속도는 항법 시스템으로부터 얻을 수 있다. 그러나 항공기의 구성을 간단하게하기 위하여 대기 속도 측정 센서를 장착하지 않는 경우, 바람 속도를 직접적으로 얻을 수 없기 때문에 필터를 이용한 바람 추정 기법이 필수이다. 이때 난류에 의해 항공기의 공력 계수가 변하게 되는데, 이는 바람 추정 필터의 시스템 모델의 불확실성을 유발하게 되고, 결국 바람 추정 성능이 저하된다. 따라서 본 연구에서는 공력계수 불확실성에 강인함을 확보하기 위해 $H{\infty}$ 필터를 적용한 바람 추정 기법을 제안하였다. 시뮬레이션을 통해 제안하는 기법이 공력계수의 불확실성이 있는 상황에서 성능을 개선하는 것을 확인하였다.
현재 민간 항공기의 기술 수준은 일반인들, 그리고 비행기의 선구자인 라이트 형제조차 상상하지 못할 만큼 발전되어 있다. 초기 조종사들과 달리 오늘 날의 조종사들은 항법사, 통신사, flight engineer 등 3명을 대신한 Flight Control Computer(FCC)등의 computer 탑재 장비들을 이용하여 안전하게 운항, 착륙할 수 있다. 그러나 불행하게도 이러한 최첨단의 항공기에서도 사고가 발생하고 있으며 대부분의 원인은 인간의 실수에서 기인한다. 조종사가 치명적인 실수를 하게 되는 이유 중의 하나는 복잡한 logic으로 운영되는 탑재 computer 장비와 아직도 완벽히 통제할 수 없는 기상 현상 때문이다. 항공기가 첨단화될수록 더 복잡한 절차의 운항이나 혹독한 기상에서 운항이 가능하지만 이와 비례하여 안전 운항에 대한 최종적인 의무를 부여받은 조종사들의 부담은 커져갈 수밖에 없는 것이 현실이다. 그러나 현재 우리나라의 과실이론은 현실적으로 빈번히 발생되고 있는 차량 사고나 의료 사고에 맞추어 발전하였기에 다양한 원천에서 발생하는 크고 작은 위협 환경을 갖고 있는 첨단의 항공 분야의 과실이론과 간극이 있다고 할 수 있다. 허용된 위험 이론을 고려해볼 때 현재 운항되고 있는 고속철이나 우주선은 이미 운용하는 인간의 능력을 초과하여 운행되고 있기에 첨단 분야에 적합한 과실이론이 필요한 시점이다. 따라서 본 연구에서는 2007년 항소심 판결이 난 자동 조종 장치(autopilot)와 조종사 그리고 불상의 원인들이 복합적으로 작용하여 발생한 JAL 706 항공 판례를 중심으로 일본 항공 판례 및 우리 항공판례를 비교 검토하고 기존의 과실 이론을 비교하여 항공 사고에 적합한 과실이론을 제시하고자 한다. 우리 나라도 항공사고 특성의 하나인 복합성을 고려하여 사고 조사나 판결에서도 사고와 직접적으로 연결되지 않는 사항에 대하여 주의의무 위반 관계를 과감히 배제하는 것이 필요하다. 모든 구체적 사건을 포섭할 수 있는 완벽한 형법 이론이 존재하지 않지만 상당인과관계설은 구체적 사건에서 판단자의 평가 여하에 따라 서로 다른 결론에 도달할 수 있고 항공기는 때때로 조종사가 통제할 수 있는 영역을 넘어서 운항되는 고속화된 교통수단이고 인간과 computer 그리고 기상이 interface되어 운항되기에 일반적 교통사고의 이해를 적용하기에는 무리가 따르기에 우리나라의 항공사고에서 객관적 귀속의 척도 사용을 고려할 때가 되었다고 생각된다.
보다 자동화된 방법으로 신뢰성 있는 난류 플럭스의 자료를 생산하기 위해서 Hong and Kim(2002)의 난류 품질 관리 프로그램을 개선하고 개선된 프로그램을 광릉산림에 적용하여 복잡한 산림지역에서 난류 플럭스의 특성을 조사하였다. 개선된 프로그램을 이용하여 2005년 1월부터 5월까지 광릉 수목원에 위치한 주 타워의 두 고도(20m와 40m)에서 관측된 난류 자료에 대하여 품질 검사를 실시하였다. 개선전과 비교해 개선된 프로그램은 이상점(outlier)에 해당되는 자료들을 많이 제거하였다. 자료의 품질체계는 4등급(Good, Dubious, Missing, Bad)으로 분류하였으며 본 분석에서 사용된 기간의 자료 중 25%는 결측이었고(Missing 등급), 60%는 Good 등급으로 분류되었다. 고도 별로는 40m에서 관측된 자료가 20m에서 관측된 자료보다 Bad 등급의 자료수가 적었는데 이는 20m가 식생 꼭대기에 인접한 거칠기 아층에 해당하고 또한 풍속도 더 낮은데 기인한다. Bad 등급으로 분류된 자료의 주원인은 낮은 풍속으로 나타났다. 분석 기간 동안의 에너지 수지의 닫힘은 약 40%로 나타났고 이러한 에너지 불균형의 부분적인 이유로는 열 저장항들이 고려되지 않은 점, 토양열 플럭스 측정의 불확실성, 복잡한 지형 등에 의한 국지풍에 의한 이류 등이 복합적으로 작용했을 것으로 생각된다. 광릉에서 발생하는 상향 운동량 플럭스는 국지풍의 발달 시 높은 발생률을 보여 이 둘이 밀접히 관련되어 있음을 나타낸다. 야간에 낮은 음의 $CO_2$ 플럭스가 발생하는 경우에 대하여 평균 시간을 증가시킴에 따른 $CO_2$ flux의 변화를 조사한 결과 평균시간이 10분 이상 증가함에 따라 $CO_2$ flux의 절대값이 빠르게 증가하는 경향을 보였다. 이는 야간에 $CO_2$ 플럭스는 중규모 운동이나 비정상성(nonstationarity) 등의 영향을 많이 받고 있음을 시사한다. 그러므로 야간에 보다 정확한 난류 플럭스 값을 산출하기 위해서는 평균시간의 적절한 조절이 필요할 것으로 보인다.
적응 광학(adaptive optics, AO)은 대기 외란을 실시간으로 보정하는 기술을 말하고, 이러한 적응광학의 효율적 개발을 위하여, 다양한 성능 예측 기법을 도입하여 적응광학이 적용된 시스템 성능 예측을 실시한다. 적응광학의 성능 예측 기법으로 자주 사용되는 기법으로는 통계분석, 전산모사 및 광학 벤치 테스트가 있다. 통계분석에서는 적응광학 시스템을 통계 분석 모델로 가정하여 오차값(분산)의 제곱을 전부 합쳐 스트렐비를 간단하게 추정한다. 다만, 하위 변수 간의 상관 관계는 무시되어 이에 따른 추정의 오류는 존재한다. 다음으로, 전산모사는 대기 난류, 파면센서, 변형거울, 폐쇄 루프 등 모든 구성요소를 가능한 한 실제와 가깝게 모델링하고, 시간 흐름에 따른 적응광학 시스템의 변화를 모두 구현하여 성능 예측을 수행한다. 다만, 전산모사 모델과 현실 사이에는 여전히 일부 차이가 있어, 광학 벤치 테스트를 통하여 시스템 성능을 확인한다. 최근 국내에서 개발된 변형 거울을 적용한 1.6 m 지상 망원경용 적응광학 시스템을 개발 중에 있어, 이에 적용 가능한 적응광학 시스템을 통하여 성능 예측 기법이 요구되며 동시에 성능 예측 기법의 비교를 진행하고자 한다. 앞서 언급된 통계분석 및 전산모사를 이용하여 시스템 성능 예측을 수행하였으며, 성능 예측의 분석을 위해 각각의 성능 예측 기법의 망원경 및 적응광학 시스템 모델링 과정 및 결과를 제시하였다. 이때 성능 예측을 위한 대기 조건으로는 보현산 관측 중앙값(median)을 적용하였다. 그 결과 통계 분석 방법의 경우 평균 스트렐 비가 0.31이 도출됨을 확인하였고, 전산모사 방법의 경우 평균 스트렐 비가 0.32를 가짐을 확인함으로써 두 방법에 의한 예측이 거의 유사함을 확인할 수 있었다. 추가적으로, 전산모사의 경우 해석 결과의 신뢰성을 확보하기 위하여, 모사 시간이 대기 임계 시간 상수의 약 240배인 0.9초 이상 수행되어야 함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.