• Title/Summary/Keyword: Ground trajectory

Search Result 182, Processing Time 0.028 seconds

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Stable Walking of a Humanoid Robot under Soft Terrains (부드러운 지면에서의 휴머노이드 로봇의 안정보행)

  • Yoo, Young-Kuk;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.72-81
    • /
    • 2009
  • The purpose of this paper is to accomplish the stable humanoid robot walking on the soft terrains. The goal of the humanoid robot development is to make the robotic system perform some tasks in human living environment. However, human dwelling environments are very different from those of laboratories, where varied experiments are performed by the robot. In many cases, the ground is soft or elastic unlike the floor of a laboratory. When a robot walks on the soft ground, the sole of robot contacts the uneven ground. This results in unstable walking or walking may be impossible according to the degree of softness. Therefore, the algorithm that facilitates stable walking on the soft ground surface is required. In this paper, we suggest an algorithm that controls the ankle to help the robot walk stably on the soft ground using the humanoid robot (ISHURO-II) as a real model. A humanoid robot walking on the soft ground was simulated to verify that the proposed algorithm results in stable walking.

Anomalous Variations in Atmospheric Carbon Monoxide Associated with the Tsunami

  • Retnamayi, Anjali;Ganapathy, Mohan Kumar;Santha, Sreekanth Thulaseedharan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Variations in ambient atmospheric carbon monoxide(CO) observed at an inland mining site in the Indo-Gangetic plains, Jaduguda ($22^{\circ}38'N$, $86^{\circ}21'E$, 122m MSL, ~75 km away from the coast of the Bay of Bengal) during the Tsunami of 26 December 2004 were monitored. CO mixing ratio over this site was measured using a non-dispersive infrared analyzer (Monitor Europe Model 9830 B). Back trajectory analysis data obtained using NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was also used for this study. Variations in CO mixing ratio at a coastal site, Thiruvananthapuram ($8^{\circ}29'N$, $76^{\circ}57'E$, located ~2 km from the Arabian Sea coast) have also been investigated using CO data retrieved from the Measurement Of Pollution In The Troposphere (MOPITT) instrument. Ground-based measurements indicated abnormal variations in CO mixing ratio at Jaduguda from 25 December 2004 evening (previous day of the Tsunami). MOPITT CO data showed an enhancement in CO mixing ratio over Thiruvananthapuram on the Tsunami day. Back trajectory analyses over Thiruvananthapuram and Jaduguda for a period of 10 days from $21^{st}$ to $30^{th}$ December 2004 depicted that there were unusual vertical movements of air from high altitudes from 25 December 2004 evening. CO as well as the back trajectory analyses data showed that the variations in the wind regimes and consequently wind driven transport are the most probable reasons for the enhancement in CO observed at Jaduguda and Thiruvananthapuram during the Tsunami.

Trajectory Estimation of Center of Plantar Foot Pressure Using Gaussian Process Regression (가우시안 프로세스 회귀를 이용한 족저압 중심 궤적 추정)

  • Choi, Yuna;Lee, Daehun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2022
  • This paper proposes a center of plantar foot pressure (CoP) trajectory estimation method based on Gaussian process regression, with the aim to show robust results regardless of the regions and numbers of FSRs of the insole sensor. This method can bring an interpolation between the measurement points inside the wearable insole sensor, and two experiments are conducted for performance evaluation. For this purpose, the input data used in the experiment are generated in three types (13 FSRs, 8 FSRs, 5 FSRs) according to the regions and numbers of FSRs. First, the estimation results of the CoP trajectory are compared using Gaussian process regression and weighted mean. As a result of each method, the estimation results of the two methods were similar in the case of 13 FSRs data. On the other hand, in the case of the 8 and 5 FSRs data, the weighted mean varies depending on the regions and numbers of FSRs, but the estimation results of Gaussian process regression showed similar results in spite of reducing the regions and numbers. Second, the estimation results of the CoP trajectory based on Gaussian process regression during several gait cycles are analyzed. In five gait cycles, the previous cycle and the current estimation results are compared, and it was confirmed that similar trajectories appeared in all. In this way, the method of estimating the CoP trajectory based on Gaussian process regression showed robust results, and stability was confirmed by yielding similar results in several gait cycles.

A Design of Telemetry Ground System for the Scientific Sounding Rocket KSR-420S (과학관측로케트 KSR-420S의 원격측정 지상시스템 설계)

  • 이수진;이재득;조광래;유장수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.26-32
    • /
    • 1991
  • Korea Aerospace Research Institute(KARI) performs research on developing the scientific sounding rocket(KSR-420S) for measuring ozone profile and atmosphere layer over korean peninsula. Informations about performances of flighting scientific rocket, that is temperature, strain, acceleration, pressure, rocket attitude and ranging data, and measuring data of ozone, ionosphere and X-ray are transmitted ground system by rocket onboard transmitting system. In this paper, the telemetry ground system which is compatible with the KSR-420S is designed for tracking the trajectory and receiving the incoming signals.

  • PDF

A Study on a Trajectory of Mast Arm End-Effector (마스트 암 엔드-이펙터 궤적에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.151-157
    • /
    • 2006
  • As people's living standard is being improved, human works are being replaced by robots. However, because most robots are used in process industry, fixed on the ground, we need to develop human robots that have wide applications. Currently many researches are being conducted on human robots with the object of replacing human works, but because of lack of relevant hardware, such robots are being applied limitedly to very simple tasks. To overcome the limitation, the present study developed a kinematical mechanism and a controller. Based on human kinematics, the shoulders and the arms were composed of master arms with 3 degree of freedom, and we reproduced motions similar to human ones through the characteristics of joint variables and experiment on the trajectory of the end effector.

Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform (불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계)

  • Kim, Jihoon;Jin, Sangrok;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.

3단형 과학관측로켓용 탑재 트랜스폰더 시스템 개발

  • Kim, Sung-Wan;Lee, Soo-Jin;Kim, Joo-Nyun;Ma, Keun-Su;Kim, Jun-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.135-140
    • /
    • 2002
  • The position and trajectory of in-flight rocket are important informations to determine the flight safety of rocket. In general tracking system, radar and transponder are used to acquire position information. Rocket position and trajectory can be determined by using RF communication between ground station and in-flight rocket and antenna position data. Onboard transponder system is composed of RF receiving part, RF transmitting one, decoder and single TX/ RX antenna. Therefore circulator is necessary for minimizing RF signal interference. In this paper, the radar transponder system was developed to track the trajectory and position of KSR-Ⅲ by using radar.

  • PDF

On Long Range Transport of Air Pollutants - Sources and Observations of Yellow Sand, TSP and Sulphate in Korea (대기오염의 장거리 이동 사례연구 : 황사, TSP, Sulphate의 발원지 추적)

  • 정용승;김태군
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1991
  • It is observed that the outbreak of dust storms (yellow sand) from Northern China and Mongolia occurs a few times in April 1988 and 1990. It is found that a dust storm initiated with strong gusty winds after the passage of a cold front, particularly after defrost of the ground surface of a source region in the early spring. According to meteorological chart, satellite images and trajectory analyses, dust clouds invaded Korea in April 1988 and 1990 were landing in the sink area after 2 $\sim$ 4 days travelling for 2,000 $\sim$ 3,000 km from a source region. It was also observed that in the west coast total suspended particulated (TSP) were 100 $\sim$ 200 $\mug m^{-3}$ and sulphates $(SO_4=)$ were 3 $\sim$ 10 $\mug m^{-3}$. These values clearly exceed the concentrations of a background level measured in the Arctic and Atlantic Ocean. Trajectory analyses and meteorological analyses suggest that the high values occurred with prevailing westerly flows coming from anthropogenic sources in China. High concentrations of air pollutants occurred in the backside of an anticyclone and in the area "col".col".uot;.

  • PDF