• Title/Summary/Keyword: Ground subsidence risk prediction model

Search Result 5, Processing Time 0.017 seconds

Development of Machine Learning Model to Predict the Ground Subsidence Risk Grade According to the Characteristics of Underground Facility (지하매설물 속성을 활용한 기계학습 기반 지반함몰 위험도 예측모델 개발)

  • Lee, Sungyeol;Kang, Jaemo;Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.5-10
    • /
    • 2022
  • Ground Subsidence has been continuously occurring in densely populated downtown. The main cause of ground subsidence is the damaged underground facility like sewer. Currently, ground subsidence is being dealt with by discovering cavities in ground using GPR. However, this consumes large amount of manpower and cost, so it is necessary to predict hazardous area for efficient operation of GPR. In this study, ◯◯city is divided into 500 m×500 m grids. Then, data set was constructed using the characteristics of the underground facility and ground subsidence in grids. Data set used to machine learning model for ground subsidence risk grade prediction. The purposed model would be used to present a ground subsidence risk map of target area.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer (하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교)

  • Lee, Sungyeol;Kim, Jinyoung;Kang, Jaemo;Baek, Wonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.

A Study on the Evaluation Method of Subsidence Hazard by a Diffusion Equation and its Application (확산방정식을 이용한 침하 위험도 평가 기법 및 그 적용)

  • Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong;Kim, Taek-Kon;Park, Joon-Young
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.372-380
    • /
    • 2007
  • Surface damage due to subsidence is an inevitable consequence of underground mining, which may be immediate or delayed for many years. The surface damage due to abandoned underground mine is observed to be two subsidence types such as simple sinkhole or trough formation to a large scale sliding of the ground from with in the subsided area. An evaluation of the risk of a subsidence occurrence is vital in the areas affected by mining subsidence. For a subsidence prediction or a risk evaluation, there has been used various methods using empirical models, profile functions, influence functions and numerical models. In this study, a simple but efficient evaluation method of subsidence hazard is suggested, which is based on a diffusion theory and uses just information about geometry of caving and topography. The diffusion model has an analogous relationship with granular model which can explain a mechanism of subsidence. The diffusion model is applied for the evaluation of subsidence hazard in abandoned metal and coal mines. The model is found to be a simple but efficient tool because it needs information of geometry of caving and gangway and the topography.

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.