• Title/Summary/Keyword: Ground stabilizer

Search Result 52, Processing Time 0.028 seconds

Analysis of the Applicability of Ground Stabilizer Using Recycled Resources as Prebored Piles (매입말뚝 주면고정액으로 순환자원을 재활용한 지반안정재의 활용 가능성 분석)

  • Seo, Se-Gwan;Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 2021
  • In this study, tests were performed to analyze the feasibility of using the ground stabilizer from recycled resources such as blast furnace slag powder as filling material of prebored piles. For this, specimens were prepared by applying 70% and 83% of the general water/binder ratio of the filling material of prebored piles. And compression test, model test, and shaking table test were performed to determine the compressive strength, skin friction on the surface between prebored pile and filling material, and seismic performance of ground stabilizer. As a result of the tests, the compressive strength exceeded the relevant domestic standards, and the skin friction was equivalent to that of ordinary portland cement. In addition, the amount of vertical and horizontal displacement caused by earthquakes was found to be much smaller than the domestic standard. Therefore, when considering the test results comprehensively, it is judged that the feasibility of using a ground stabilizer from recycled resources as filling material for prebored pile is sufficient.

A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent (고화재에 의한 해성점성토의 표층안정처리에 관한 연구)

  • 천병식;양진석
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF

An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization (연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구)

  • 천병식;김진춘;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

The Evaluation of Optimum Hardening Agent Mixture Ratio for Surface Stabilization on Extremely Soft Marine Clay (초연약해성점성토 지반의 표층안정처리를 위한 최적고화재 배합비 산정에 관한 연구)

  • 천병식;한기열
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.408-415
    • /
    • 2001
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. The aim of this study if to determine optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent consists of fly ash, gypsum, slag and cement for the ettringite hydrates and if effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient and marine clay in Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get optimal mixture ratio for 16-stabilizer materials of 6 types, and mixture ratio of stabilizer ingredient and marine clay was determined.

  • PDF

A Study on B737NG Aircraft Tail Strike during Takeoff (B737NG 항공기 이륙 중 미부지면접촉에 관한 연구)

  • Noh, Kun-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2009
  • According to the aviation statistics, tail strike incidents and accidents are cyclic. Although many tail strikes occurred during takeoff, these are less than during landing cases. Many cases are related on human factors. In my opinion it is possible to analyze the causes of takeoff tail strikes to some extent. There are major casual factors of tail strike during takeoff such as; (1) Mis-trimmed horizontal stabilizer (2) premature rotation prior to $V_R$ (3) Excessive pitch up rate during rotation (4) Improper use of the flight director. Among these causes improper use of flight director is excluded in this paper because it is recommended that pilot should use flight director after airborne. So I analyzed the other three causes as following. Firstly, because mis-trimmed stabilizer is related to center of gravity(CG), the relationship between stabilizer and CG is reviewed. Secondly, concerned premature rotation prior to $V_R$ I reviewed the background of rotation speed($V_R$) establishment and analyzed theoretically what speed leads to tail strikes. Thirdly, concerning excessive pitch up rate during rotation I analyzed what excessive pitch up rate can decrease ground clearance while using FDR data.

  • PDF

Characteristics of Desiccation on the Stabilized Layer in Waste Landfill (쓰레기 매립지에서 표층고화처리층의 건조수축특성)

  • 천병식;임종윤;최창현;차용혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.301-308
    • /
    • 1999
  • With the shortage of the land and NIMBY syndrome, it is issued recently that the capacity of waste-landfill site is needed though the decreasing tendency of waste landfill. From this point, the stability is the most essential problem in the landfill that will be constructed. Advanced design and construction are most important for that. In this paper, for the study of desiccation, dry-shrinkage crack from drying and chemical reaction in cement hydration, which is occurred when the surface layer stabilization method is applied in wast landfill, laboratory test of the ground and specimen according to the mixture ratio of stabilizer is performed. From the result, it is notified that the uni-axial strength increases with the stabilizer, but dry-shrinkage increases too, therefore, it is important and the goal of this study to find the optimal mixture ratio of each stabilizer. Analysis of variance for regression with acting variables is performed to find optimal mixture ratio of each stabilizer.

  • PDF

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

A Study on the mix design for the Soilcrete by Using FGC Soil Stabilizer (FGC계 고화재를 이용한 Soilcrete 배합설계에 관한 연구)

  • 천병식;고갑수;김진춘;하상욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.293-300
    • /
    • 1999
  • Soilcrete has been the traditional material for the paving and soft ground improvement techniques. But because the durability is not excellent and the quality is not homogeneous, it has not been used for the various purposes up to date. And because the quality of soilcrete is apt to be changed by the content of water and soil stabilizer, and the kind of soil and soil stabilizer, it is not free of cares. But with the increase of naturally oriented needs for the light traffic road such as pedestrian roads of the garden, golf courses and sidewalks, the cases of soilcrete paving has been increased recently. This study aims at making the reference table of the mix design in accordance with the required design specifications for the soilcrete admixtures by the FGC soil stabilizer by using the statistical experiment method. The treated soil is the clay which are widely spreaded in Korea. As the results of this study we can derive the effective reference mix design table for the clay soil treated by the FGC soil stabilizer in accordance with the compressive strength of 50∼200kg/$\textrm{cm}^2$ soilcrete with respect to the contents of water, soil stabilizer and fine sand.

  • PDF

Test of Vision Stabilizer for Unmanned Vehicle Using Virtual Environment and 6 Axis Motion Simulator (가상 환경 및 6축 모션 시뮬레이터를 이용한 무인차량 영상 안정화 장치 시험)

  • Kim, Sunwoo;Ki, Sun-Ock;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.227-233
    • /
    • 2015
  • In this study, an indoor test environment was developed for studying the vision stabilizer of an unmanned vehicle, using a virtual environment and a 6-axis motion simulator. The real driving environment was replaced by a virtual environment based on the Aberdeen Proving Ground bump test course for military tank testing. The vehicle motion was reproduced by a 6-axis motion simulator. Virtual reality driving courses were displayed in front of the vision stabilizer, which was located on the top of the motion simulator. The performance of the stabilizer was investigated by checking the image of the camera, and the pitch and roll angles of the stabilizer captured by the IMU sensor of the camera.