• Title/Summary/Keyword: Ground segment

Search Result 149, Processing Time 0.021 seconds

Effect of soil flexibility on bridges subjected to spatially varying excitations

  • Li, Bo;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.213-232
    • /
    • 2014
  • Pounding is a major cause of bridge damage during earthquakes. In an extreme situation, it can even contribute to the unseating of bridge girders. Long-span bridges will inevitably experience spatially varying ground motions. Soil-structure interaction (SSI) may play a significant role in the structural response of these structures. The objective of this research is to experimentally investigate the effect of spatially varying ground motions on the response of a three-segment bridge considering SSI and pounding. To incorporate SSI, the model was placed on sand contained in sandboxes. The sandboxes were fabricated using soft rubber in order to minimise the rigid wall effect. The spatially varying ground motion inputs were simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock conditions, using an empirical coherency loss function. The results show that with pounding, SSI can amplify the pier bending moments and the relative opening displacements.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

A study on failure probability characteristic based on the reliability analysis according to the variation of boundary conditions (신뢰성 기반 쉴드터널의 경계조건 변화에 따른 파괴확률 특성에 관한 연구)

  • Gyu-Phil Lee;Young-Bin Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.447-458
    • /
    • 2023
  • In this study, a comparison model considering the stochastic characteristics of the load and member resistance of the shield tunnel segment lining as well as the variability of the boundary condition was selected and reliability analysis was performed, and the adequacy of the limit state design was analyzed by calculating the probability of failure and reviewing the structural safety. For the analysis considering the probability characteristics of these ground constants, the ground spring coefficient was considered as the mean value by calculating the quantitative value by applying the Muirwood formula, and the coefficient of variation was selected based on the existing research data to review the models according to the change of ground boundary conditions. Through the structural analysis of these models and the reliability analysis using MCS technique, the failure probability and reliability index were calculated to examine the changes in the failure probability due to changes in ground boundary conditions.

DEVELOPMENT OF THE HAUSAT-2 PAYLOAD OF ANIMAL TRACKING SYSTEM (HAUSAT-2 소형 위성 동물 추적 시스템 탑재체 개발)

  • Lee Jeong-Nam;Lee Byung-Hoon;Moon Byung-Young;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.129-132
    • /
    • 2006
  • Animal Tracking System consists of Animal Tracking System Receiver on the Satellite segment, Animal Tracking Terminal and Ground Station for data analysis on the Ground segment. This paper describes operation concept and hardware design for Animal Tracking System which is the payload of HAUSAT-2 being developed by the Space System Research Laboratory (SSRL). Algorithms for determination of animal position and data processing are also referred to.

  • PDF

A Study on the Construction of Ground Test Segment for the Time Synchronization System Using the Geostationary Satellite (정지궤도 위성을 이용한 시각동기 지상시스템 시험장비 구축에 관한 연구)

  • Lee, Sang-Cherl;Kim, Bang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.104-108
    • /
    • 2004
  • The most of the CDMA mobile communication depends on the GPS for the time synchronization. Then, we must prepare alternative system against the unusable GPS like a unexpectable accident or strategic purpose by the USA government. In this study, we have constructed ground test segment for the time synchronization system using the geostationary satellite. In addition. we have designed, manufactured and tested the transmitting and receiving board to receive 1 PPS signal from atomic clock for transmitting stored data in buffer to satellite modem and to produce 1 PPS signal from satellite modem for measuring time delay.

Forward probing utilizing electrical resistivity and induced polarization for predicting mixed-ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 복합지반 예측 기법)

  • Ryu, Jinwoo;Park, Jinho;Lee, Seong-Won;Lee, In-Mo;Kim, Byung-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.55-72
    • /
    • 2018
  • A method that can predict the mixed-ground condition ahead of a TBM tunnel face during tunnel construction utilizing electrical resistivity and induced polarization (IP) was proposed in this study. Effect of TBM advancement approaching the mixed-ground condition (composed of soil layer overlying rock layer) when currently running through soil zone on the electrical resistivity and IP measuring was assessed with laboratory-scale experiments. The resistivity and IP values were measured using four electrodes, by installing two electrodes on the tunnel face (at the cutterhead), and the other two electrodes on the segment lining. The test results showed that both of the measured resistivity and IP values were kept increasing as the TBM is approaching the soil-rock mixed-ground. Also, to get the more reliable results for predicting the mixed-ground condition, it was recommended that the measurement is made at the tunnel face utilizing 4-electrodes installed at the cutterhead as well as it is made utilizing the 2-electrodes installed at the segment lining along with the 2-electrodes installed on the tunnel face (at the cutterhead) so that two measured results are compared each other.

Track System Interactions Between the Track Link and the Ground (궤도시스템의 궤도링크와 연약지반과의 상호 접촉연구)

  • Ryu, Han-Sik;Jang, Jung-Sun;Choi, Jin-Hwan;Bae, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1711-1718
    • /
    • 2004
  • When the tracked vehicle is running on various types of terrain, the physical properties of the interacting ground can be different. In this paper, the interactions between track link and soft soil ground are investigated using static sinkage theory of soil ground. Grouser surfaces of a track link and triangular patches of ground are implemented for contact detection algorithm. Contact force at each segment area of a track link is computed respectively by using virtual work concept. Bekker's static soil sinkage model is applied for pressure-sinkage relationship and shear stress-shear displacement relationship proposed by Janosi and Hanamoto is used for tangential shear forces. The repetitive normal loads of a terrain are considered because a terrain element is subject to the repetitive loading of the roadwheels of a tracked vehicle. The methods how to apply Bekker's soil theory for multibody track system are proposed in this investigation and demonstrated numerically by high mobility tracked vehicle.

Accuracy analysis of SPOT Orbit Modeling Using Orbit-Attitude Models (궤도기반 센서모델을 이용한 SPOT 위성 궤도모델링 정확도 분석)

  • Kim, Hyun-Suk;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.27-36
    • /
    • 2006
  • Conventionally, in order to get accurate geolocation of satellite images we need a set of ground control points with respect to individual scenes. In this paper, we tested the possibilities of modeling satellite orbits from individual scenes by establishing a sensor model for one scene and by applying the model, which was derived from the same orbital segment, to other scenes that has been acquired from the same orbital segment. We investigated orbit-attitude models with several interpolation methods and with various parameter sets to be adjusted. We used 7 satellite images of SPOT-3 with a length of 420km and ground control points acquired from GPS surveying. Results of the conventional individual scene modeling hardly introduced differences among different interpolation methods and different adjustment parameter sets. As the results of orbit modeling, the best model was the one with Lagrange interpolation for position/velocity and linear interpolation for attitude and with position/angle bias as parameter sets. The best model showed that it is possible to model orbital segments of 420km with ground control points measured within one scene (60km).

  • PDF

Effects of Prolonged Running-Induced Fatigue on the Periodicity of Shank-Foot Segment Coupling and Free Torque

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2016
  • Objective: The purpose of this study was to determine the periodicity of shank-foot segment coupling and free torque before and after fatigue induced by prolonged running. Method: Fifteen young healthy male participants with a rear-foot strike ran on instrumented dual-belt treadmills at 70% of their maximum oxygen uptake for 65 min. Kinematic and ground reaction force data were collected for 20 continuous strides at 5 and 65 min (considered the fatigued condition). The approximate entropy tool was applied to assess the periodicity of the shank internal-external rotation, foot inversion-eversion, shank-foot segment coupling, and free torque for the two running conditions. Results: The periodicity of all studied parameters, except foot inversion-eversion, decreased after 65 min of running (fatigued condition) for 80% of the participants in this study. Furthermore, 60% of the participants showed similarities in the change of periodicity pattern in shank internal-external rotation, coupling, and free torque. Conclusion: The findings indicated that the foot inversion-eversion motion may pose a higher risk of injury than the shank internal-external rotation, coupling, and free torque in the fatigued condition during prolonged running.

Cracking Reason Analysis of Concrete Lining Segment with TBM Driving (TBM 진행에 따른 라이닝 세그먼트 균열 원인 분석)

  • Kim, Moon-Kyum;Jang, Kyung-Gook;Won, Jong-Hwa;Kim, Tae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.624-629
    • /
    • 2008
  • When TBM excavates a tunnel, existing concrete lining segments are used as supporting structures for driving force. Axial stress on the lining segments are apt to be large in case of direct driving force. However, it drastically decline as it is farther and father from TBM and later, it tends to converge after a certain point. Such tendencies show similar results of finite element analysis. At the initial intervals, the values of finite element analysis are larger, while at the later intervals, the actual stress values are larger. It concludes that such tendencies are attributable to that the concrete lining segments have partially burst and cracked in the axial direction at the initial intervals. And differences of stresses at the later intervals are created by the changed plasticity of ground and the friction on the external sides of the lining segments.

  • PDF