• Title/Summary/Keyword: Ground load

Search Result 1,467, Processing Time 0.027 seconds

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

A Study on the Characteristics and the Reduction Methods for the Ground Vibration due to Traveling Tilting Car (틸팅차량의 주행에 의한 지반진동특성 및 저감방안 연구)

  • Lee Jong-Seh;Kim Hee-Seok;Lee Jung-Min;Eom Ju-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.510-517
    • /
    • 2005
  • In this paper a study on the characteristics and the reduction method for the ground vibration due to traveling tilting car are carried out. The transmitted load which induces the ground vibration is computed through a study on the interaction between tilting car and the line. Then, this load is applied into the numerical model, which is designed considering the diverse ground conditions and tunnels. Through the numerical analysis according to the conditons, the characteristics and the reduction method for the ground vibration by tilting car are studied.

  • PDF

A Study on the Characteristics and the Reduction Methods for the Ground Vibration due to Traveling Tilting Car (틸팅차량의 주행에 의한 지반진동특성 및 저감방안 연구)

  • Lee, Jong-Seh;Kim, Hee-Seok;Lee, Eun-Soo;Eom, Ju-Hwan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.560-568
    • /
    • 2005
  • In this paper a study on the characteristics and the reduction method for the ground vibration due to traveling tilting car are carried out. The transmitted load which induces the ground vibration is computed through a study on the interaction between tilting car and the line. Then, this load is applied into the numerical model, which is designed considering the diverse ground conditions. Through the numerical analysis according to the conditons, the characteristics and the reduction method for the ground vibration by tilting car are studied.

  • PDF

Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test (대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석)

  • Kang, Min-Su;Jo, Myung-Su;Koh, Yong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Ground Anchor Testing on Temporary Excavations (일반 가설앵커의 문제점과 개선방향)

  • 김성규;김낙경;김정렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.545-552
    • /
    • 2003
  • For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.

  • PDF

Longitudinal arching effect of an under-passing tunnel on the existing tunnel undergoing a load of upper structures (상부 구조물 하중의 영향을 받는 기존터널에 직각 교차하는 하부 터널의 종방향 아칭효과)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.417-427
    • /
    • 2010
  • In the ease that a new cross tunnel is constructed under the existing tunnel, development of a longitudinal arching would be influenced by the existing tunnel. But it is not enough to investigate. Especially, the influence of the structure loads on the ground surface on the new tunnel, which the under-passes existing tunnel has been rarely studied. This study, therefore, aimed to clarify the effect of the existing tunnel and the structure on the ground surface on the development of a longitudinal ground arching during the excavation of a cross tunnel under the existing tunnel. Two-dimensional model tests were carried out in the test box, whose dimension was 30 cm (wide) ${\times}$ 113 cm (deep) ${\times}$ 87 cm (high). The existing tunnel was made of S21 steel tube in 16 cm diameter and 1 mm thickness. The ground surface load was 4.9 kPa and was loaded on the model structure in the size with 30 cm width ${\times}$ 16 cm height. New tunnel was excavated in 250 mm height by a bench cut method. As results, the longitudinal arching would be developed but it was severely influenced by not only the existing upper tunnel but also the ground surface load. The influence of the ground surface load on the development of longitudinal ground arching around a new tunnel showed the highest value when the tunnel face located direct under the surface load.

Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation (근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.331-341
    • /
    • 2007
  • Pre-loads could be imposed on the braced wall to prevent the horizontal displacements during the ground excavation adjacent to the existing tunnel. For this purpose, new pre-loading system through which large pre-loads could be applied to the braced wall was used in the model tests. Large scale model tests were performed in the real scale test pit which was 2.0 m in width and 6.0 m in hight and 4.0 m in length. Test ground was constructed by sand. Model tunnel in 1.2 m diameter was constructed before test ground excavation. Test ground was excavated adjacent to existing tunnel and was braced. To investigate the effect of pre-loading, tests without pre-load were also performed. During the ground excavation were the behavior of braced wall, test tunnel, and ground measured. Model tests were also numerically analysed and their results were compared to that of the real scale tests. As a result, it was found that the stability of the existing tunnel was greatly enhanced when the horizontal displacements of braced wall was reduced by applying pre-load larger than the design load.

  • PDF

Displacement-based seismic design of open ground storey buildings

  • Varughese, Jiji Anna;Menon, Devdas;Prasad, A. Meher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.19-33
    • /
    • 2015
  • Open ground storey (OGS) buildings are characterized by the sudden reduction of stiffness in the ground storey with respect to the upper infilled storeys. During earthquakes, this vertical irregularity may result in accumulated damage in the ground storey members of OGS buildings without much damage in the upper storeys. Hence, the structural design of OGS buildings needs special attention. The present study suggests a modification of existing displacement-based design (DBD) procedure by proposing a new lateral load distribution. The increased demands of ground storey members of OGS buildings are estimated based on non-linear time history analysis results of four sets of bare and OGS frames having four to ten storey heights. The relationship between the increased demand and the relative stiffness of ground storey (with respect to upper storeys) is taken as the criterion for developing the expression for the design lateral load. It is also observed that under far-field earthquakes, there is a decrease in the ground storey drift of OGS frames as the height of the frame increases, whereas there is no such reduction when these frames are subjected to near-field earthquakes.

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

Experimental study on the tunnel behavior induced by the excavation and the structure construction above existing tunnel (기존터널 상부지반 굴착 후 구조물 설치에 따른 터널거동에 관한 실험적 연구)

  • Cha, Seok-Kyu;Lee, Sangduk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.640-655
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structures. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process in the ground under the excavation basement can affect the existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effect of the excavation of the ground and the new structure load on the existing tunnel was experimentally implemented and the influence of the adjacent construction on the existing tunnel was investigated. For this purpose a large testing model with 1/5 scale of the actual size was manufactured. The influence of ground excavation, width of the load due to new structure, and distance between centers of tunnel and of excavation on the existing tunnel was investigated. In this study, it was confirmed that the influence on the existing tunnel gets larger, as the excavation depth get deeper. At the same distance, it was confirmed that the tunnel displacement increased up to three times according to the increase of the building load width. That is, the load width influences the existing tunnel larger than the excavation depth. As the impact of the distance between centers of tunnel and of excavation, it was confirmed that tunnel crown displacement decreased by 48%. The result showed that a tunnel is located in the range of 1D (D: tunnel diameter) from the center of excavation, the effect of excavation is the largest.