• Title/Summary/Keyword: Ground heat

Search Result 898, Processing Time 0.029 seconds

The Reduction of Temperature Rise in High Strength Concrete (고강도용 콘크리트의 온도상승 저감대책)

  • 문한영;문대중;하상욱;서정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.133-139
    • /
    • 1996
  • As construction technology advances, most of civil engineering structures are becoming larger and taller. Therefore, high strength concrete is necessary for them. For high strength concrete, it needs a large amount of unit cement content and low water-cement ratio inevitably, so that a large amount of heat occurs in concrete. The thermal cracks make the durability and quality of concrete structures become worse, result from temperature rise and thermal stress due to heat of hydration. In this study, the proposal of using ground granulated blast furnace slag, fly ash and chemical admixtures was investigated to decrease the temperature rise of concrete.

  • PDF

Thermal Characteristics with Various Thermal Insulation Types in Basement Structures (지하층 구조체의 단열재 설치방법에 따른 열전달 특성)

  • 이재윤;조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.918-927
    • /
    • 2003
  • This study is to analyze thermal characteristics of the basement structures with a non-thermal insulation and various thermal insulations. From the results through the field experiments and computer simulations, the thermal bridges and heat loss is found in non-insulation structure of the basement under the definite depth of ground level. Therefore, the thermal insulation structure should be installed for preventing the heat loss in the basement.

Variations in total phenols, total anthocyanins, and antioxidant activity levels in black chokeberry (Aronia melanocarpa) fruits subjected to dry and moist heat treatments

  • Kim, Hekap;Mai, Thu Thi Hoai
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.503-509
    • /
    • 2020
  • The present study investigated the effects of dry and moist heat treatments on total phenols, total anthocyanins, and antioxidant activity levels in black chokeberry (Aronia melanocarpa) fruits. Lyophilized chokeberry powder samples were heated in a drying oven at 60, 100, 160, 180, and 200℃ for 20, 40, or 60 min. Finely ground fresh chokeberry fruits were heated in water at 60, 80, and 100℃ for 20 min, and bioactive compound and antioxidant activity levels were measured. The bioactive compounds and antioxidant activity decreased with increasing temperature and treatment duration. Antioxidant activity was preserved at 160℃ or lower without significant loss for dry heating, whereas moist heat treatment increased both bioactive compounds and antioxidant activity with increasing temperature.

THE RELATIVE DEGREE OF CONVERSION OF THE COMPOSITE RESIN SURFACE (복합레진 표면의 중합률)

  • Park, Seong-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.360-365
    • /
    • 1996
  • The purpose of this study was to evaluate the changes in the degree of conversion on a composite resin surface following heat treatment and mylar strip finishing. The effects of the time interval between the light-curing and heat-curing process were also evaluated. The composite resin surface which had been covered with a coverglass showed a lower conversion rate than the surface from which a layer of $500{\mu}m$ was ground away. The composite resin surface was definitely affected by oxygen during the heat curing process when it had not been insulated. When the composite resins were heat cured after 3 days of storage following the light curing process, the increased in the degree of conversion through heatcuring was limited.

  • PDF

Mechanical Characteristics when Wire Electrical Discharge Machining and Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 연삭가공시 기계적 특성)

  • 김종업;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.172-178
    • /
    • 2001
  • Titanium alloys have lightness, high strength and good corrosion resistant characteristics, and broadly used in manufacturing parts for military and aerospace industries. And these alloys also are recognized for organism materials comparatively and used as fixing ones in the human body. Nevertheless thess alloys have excellent properties such as corrosion resistance, heat resistance, and good tensile strength, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by tools. Therefore, it is required nontraditional machining process. And the mechanical characteristics such as surface structure and shape, hardness and bending strength are studied for wire electrical discharge machined and surface ground titanium alloys for various heat-treated conditions.

  • PDF

Characteristic Mode Analysis and New Ground Approach At a Heat-sink for Reducing EM Radiation

  • Son, Seung-Han;Ahn, Chang-Hoi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.379-386
    • /
    • 2018
  • A heat-sink has been widely used to cool down the heat generated from an electronic device, but it can bring unwanted electromagnetic radiation which may cause EMI problems. We propose a systematic method to reduce the electromagnetic radiation by using the multiple grounding technique based on the grounding criteria and the theory of characteristic mode analysis. Our proposed method provides the insight to find the specific grounding positions which can be effectively reduced the radiation from the heat-sink. Numerical experiments are accomplished to validate this approach.

Case study on construction and economic analysis of geothermal heat pump system (지열 시공 사례 및 동절기 경제성 분석)

  • Park, Chen-Kwan;Shin, Yang-Han;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Renewable energy is growing based on low-carbon green energy government policies. According to this policy, geothermal energy is highly efficient and environmental friendly energy which is being recently expanded. However, construction companies are generated disorderly but their ability has not been verified due to the poor geothermal facility which was reported in the media. In the this paper introduce on Busan region's largest geothermal facility, it was confirmed that thermal efficiency of the underground is close to heat exchanger performance. Therefore the study improving the efficiency of underground heat exchange found progressed. The results showed voids between borehole and ground heat exchanger should not be raised. And then geothermal facilities were installed very successfully through the principle grouting operation. As compared to the energy consumption on the basis of operating results energy usage was less than any other heat sources.

Thermal Properties of Granite for Installation of Underground Heat Exchanger (지중 열교환기 설계를 위한 화강암의 열물성 연구)

  • Kim, Jong-Chan;Lee, Young-Min;Koo, Min-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.456-459
    • /
    • 2007
  • Thermal conductivities (TC) of 57 Jurassic muscovitic granite samples (KIGAM) and 149 porphyritic granite samples (Yeonki: BE-2, BE-3) were measured with LFA-447. Ranges of TC values are $2.429{\sim}3.878$ W/mK (KIGAM), $2.220{\sim}3.767$ W/mK (Yeonki, BE-2) and $2.019{\sim}3.990$ W/mK (Yeonki, BE-3); arithmetic means are 2.924 W/mK (KIGAM), 2.907 W/mK (Yeonki, BE-2), and 2.881 W/mK (Yeonki, BE-3), respectively. In this study, harmonic mean values were calculated to estimate the average value of TC. Harmonic mean values are 2.883 W/mK (KIGAM), 2.886 W/mK (Yeonki, BE-2), and 2.866 W/mK (Yeonki, BE-3), respectively. Heat extraction rates of a borehole heat exchanger strongly depend on TC values. Heat-extraction rates from re values are expected to be a little lower than 84 W/m in all sites. However, considering ground water flow, it is expected that actual heat extraction rate would be higher than the expected value.

  • PDF

Research on using the exhausted heat from subway tunnel as unused energy (미활용 에너지원으로서의 지하철 배열이용에 관한 연구)

  • 김종렬;금종수;최광환;윤정인;박준택;김동규;김보철;정용현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.695-701
    • /
    • 1998
  • Researches on unused energy are being continued because of the limited fossil fuel and the destruction of environment. Therefore this study was peformed as follows. The collectable amount of exhausted heat for an air-conditioning was calculated by the subway thermal environment prediction program. And the electric power needed by conventional heat source equipments was compared with one by unused heat source equipments when the exhausted heat was used by heat pump in heating and hot water supplying. The results are summarized as follows; 1) Forced ventilation should be conducted to keep optimal temperature in subway tunnel in summer as well as in winter. According to the simulation, temperature in tunnel was higher than that on the ground in summer when the forced ventilation was conducted only in winter. 2) Ventilating time should be calculated out to the optimal condition for not only saving power of ventilation fan but reusing exhausted heat. By the simulation, it is certain that the exhausted heat should be eliminated in air-conditioning time. 3) The use of exhausted heat source heat pump could save 8% of electric power per hour in comparison with existing heat pump. It was based on a present heat generation and traffic for ventilating time of general air-conditioning, but could be different by ventilating time. 4) As the traffic increases up to 1.5 or 2 times, electric power consumption of the conventional heat pump increases to 11% or 13.5% per mean hour in comparison with that of the exhausted heat source heat pump, though all-day ventilation.

  • PDF