• Title/Summary/Keyword: Ground faults

Search Result 223, Processing Time 0.025 seconds

Fault Detection in Automatic Identification System Data for Vessel Location Tracking

  • Da Bin Jeong;Hyun-Taek Choi;Nak Yong Ko
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.257-269
    • /
    • 2023
  • This paper presents a method for detecting faults in data obtained from the Automatic Identification System (AIS) of surface vessels. The data include latitude, longitude, Speed Over Ground (SOG), and Course Over Ground (COG). We derive two methods that utilize two models: a constant state model and a derivative augmented model. The constant state model incorporates noise variables to account for state changes, while the derivative augmented model employs explicit variables such as first or second derivatives, to model dynamic changes in state. Generally, the derivative augmented model detects faults more promptly than the constant state model, although it is vulnerable to potentially overlooking faults. The effectiveness of this method is validated using AIS data collected at a harbor. The results demonstrate that the proposed approach can automatically detect faults in AIS data, thus offering partial assistance for enhancing navigation safety.

A Minimized Test Pattern Generation Method for Ground Bounce Effect and Delay Fault Detection (그라운드 바운스 영향과 지연고장을 위한 최소화된 테스트 패턴 생성 기법)

  • 김문준;이정민;장훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.69-77
    • /
    • 2004
  • An efficient board-level interconnect test algorithm is proposed considering both the ground bounce effect and the delay fault detection. The proposed algorithm is capable of IEEE 1149.1 interconnect test, negative ground bounce effect prevention, and also detects delay faults as well. The number of final test pattern set is not much different with the previous method, even our method enables to detect the delay faults in addition to the abilities the previous method guarantees.

The Advanced Protection Coordination Scheme using Phase Angle of Zero-Sequence Current in Ungrounded System (비접지 계통에서 영상전류 위상을 이용한 개선된 보호협조 방안)

  • Choi, Young-Jun;Lim, Hee-Taek;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. The protection coordination method using SGR(Selective Ground Relay) and OVGR(Overvoltage Ground Relay) is generally used in ungrounded system. But this method only detects fault line and it has the possibility of malfunction. This paper proposed to advanced protection coordination method in ungrounded system. The method just using zero-sequence current can detect fault line, fault phase, fault section at terminal device. The general protection method is used to back up protection. In the case study, the proposed method has been testified in demo system by Matlab/Simulink simulations.

An analysis of The ground fault current Distribution of 22.9kV-Y Lines (22.9kV다중접지선로 지락고장점 대지유입전류 및 중성선분류 해석)

  • Lim Yong Hun;Hyun Duck Hwa;Choi Jong Gi
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.473-475
    • /
    • 2004
  • During ground faults in power system, large current and raised potential appear at nearby places. This paper presents an analytical procedure of the ground fault current for the towers of a transmission line(154kV) and distribution line(22.9kV) of an arbitrary number of spans during ground faults. In order to economically and securely protect against undesired consequences, it is necessary to evaluate as precisely as possible the value and distribution of the ground fault current.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.405-411
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Electromagnetic Field Distribution of Reactors for Matrix-type SFCLs under Triple Lines-to-Ground Faults (삼선 지락사고 발생시 매트릭스형 한류기용 리액터의 전자장 분포 해석)

  • Chung, Dong-Chul;Han, Tae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.459-463
    • /
    • 2011
  • In this paper we reported the characteristics of 1 line, 2 lines and 3 lines-to-ground fault of matrix-type SFCLs (MFCLs) and the electromagnetic field distribution of reactors for MFCLs under the same cases of ground faults. To do this, we fabricated MFCLs with 6 reactors for 3 phases. Each reactor had the length of 270 mm and diameter of 80 mm. 6 reactors were made by Bakelite. We reported experimental results, including fault currents, fault voltages and magnetic field distribution according to phase differences between each phase. We confirmed that experimental results will be useful in next future plan for real power grid.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

Analysis of an Induced Voltage of Gaspipeline Due to Faults in Transmission Systems (송전계통 고장에 의한 Gaspipeline의 유도전압 분석)

  • Kang, Joong-Koo;Kim, Hyoun-Su;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.181-182
    • /
    • 2008
  • Gaspipe buried close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. Accordingly, it is necessary to take into consideration for analysis of induced voltage on a gaspipeline in transmission lines. This paper analyses the induced voltage on the gaspipeline due to single line to ground faults of the transmission lines using EMTP (Electro-Magnetic Transients Program).

  • PDF

The characteristic of leakage current of ZnO block varistor according to fault conditions of three-phase four-wire distribution system (3상 배전계통의 고장조건에 따른 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee, B.H.;Choi, H.S.;Kang, S.M.;Park, K.Y.;Lee, S.B.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.174-177
    • /
    • 2003
  • Kinds of most frequent faults happened on overhead distribution system are the single line-to-ground fault, the line-to-line fault and the two line-to-ground fault. Occasionally, the three line-to-ground fault and the disconnection of a wire are happened in severe conditions. In this study, the single line-to-ground fault, the line-to-line fault, two line-to-ground fault on three-phase four-wire overhead distribution system were experimentally simulated and characteristics of total leakage current of distribution arrester caused by these faults were investigated. Also, the changing aspect of total leakage current of distribution arrester caused by voltage variation was investigated. In a consequence, abnormal voltages caused by voltage variation, the line-to-line fault, the two line-to-ground fault have a little effect on total leakage current of ZnO arrester. But abnormal voltages caused by the single line-to-ground fault have an important effect on total leakage current of ZnO arrester.

  • PDF

Dynamic Characteristic of the Superconducting Cable in unbalanced Faults (불평형 고장시의 초전도 케이블의 응동 특성)

  • Lee, Geun-Joon;Lee, Jong-Bae;Hwang, Si-Dol
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.37-39
    • /
    • 2007
  • In the faults of power line, single line ground and line-to-line fault make power system to unbalanced. These fault currents make unbalanced power system. This paper suggests the simulation results of dynamic characteristic of HTS cable system under unbalanced faults condition using EMTDC, Quench phenomenon and current limiting effects are observed. However, quench on the HTS is destroy cable system, coordination with SFCL has to be considered.

  • PDF